cellular lipid
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 69)

H-INDEX

47
(FIVE YEARS 6)

Author(s):  
Duc-Vinh Pham ◽  
Pil-Hoon Park

Abstract Background Adiponectin, the most abundant adipokine derived from adipose tissue, exhibits a potent suppressive effect on the growth of breast cancer cells; however, the underlying molecular mechanisms for this effect are not completely understood. Fatty acid metabolic reprogramming has recently been recognized as a crucial driver of cancer progression. Adiponectin demonstrates a wide range of metabolic activities for the modulation of lipid metabolism under physiological conditions. However, the biological actions of adiponectin in cancer-specific lipid metabolism and its role in the regulation of cancer cell growth remain elusive. Methods The effects of adiponectin on fatty acid metabolism were evaluated by measuring the cellular neutral lipid pool, free fatty acid level, and fatty acid oxidation (FAO). Colocalization between fluorescent-labeled lipid droplets and LC3/lysosomes was employed to detect lipophagy activation. Cell viability and apoptosis were examined by MTS assay, caspase-3/7 activity measurement, TUNEL assay, and Annexin V binding assay. Gene expression was determined by real time-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The transcriptional activity of SREBP-1 was examined by a specific dsDNA binding assay. The modulatory roles of SIRT-1 and adiponectin-activated mediators were confirmed by gene silencing and/or using their pharmacological inhibitors. Observations from in vitro assays were further validated in an MDA-MB-231 orthotopic breast tumor model. Results Globular adiponectin (gAcrp) prominently decreased the cellular lipid pool in different breast cancer cells. The cellular lipid deficiency promoted apoptosis by causing disruption of lipid rafts and blocking raft-associated signal transduction. Mechanistically, dysregulated cellular lipid homeostasis by adiponectin was induced by two concerted actions: 1) suppression of fatty acid synthesis (FAS) through downregulation of SREBP-1 and FAS-related enzymes, and 2) stimulation of lipophagy-mediated lipolysis and FAO. Notably, SIRT-1 induction critically contributed to the adiponectin-induced metabolic alterations. Finally, fatty acid metabolic remodeling by adiponectin and the key role of SIRT-1 were confirmed in nude mice bearing breast tumor xenografts. Conclusion This study elucidates the multifaceted role of adiponectin in tumor fatty acid metabolic reprogramming and provides evidence for the connection between its metabolic actions and suppression of breast cancer.


2021 ◽  
Vol 11 (24) ◽  
pp. 11819
Author(s):  
Katarzyna Wierzchowska ◽  
Bartłomiej Zieniuk ◽  
Dorota Nowak ◽  
Agata Fabiszewska

Microbial lipids called a sustainable alternative to traditional vegetable oils invariably capture the attention of researchers. In this study, the effect of limiting inorganic phosphorus (KH2PO4) and nitrogen ((NH4)2SO4) sources in lipid-rich culture medium on the efficiency of cellular lipid biosynthesis by Y. lipolytica yeast has been investigated. In batch cultures, the carbon source was rapeseed waste post-frying oil (50 g/dm3). A significant relationship between the concentration of KH2PO4 and the amount of lipids accumulated has been revealed. In the shake-flask cultures, storage lipid yield was correlated with lower doses of phosphorus source in the medium. In bioreactor culture in mineral medium with (g/dm3) 3.0 KH2PO4 and 3.0 (NH4)2SO4, the cellular lipid yield was 47.5% (w/w). Simultaneous limitation of both phosphorus and nitrogen sources promoted lipid accumulation in cells, but at the same time created unfavorable conditions for biomass growth (0.78 gd.m./dm3). Increased phosphorus availability with limited cellular access to nitrogen resulted in higher biomass yields (7.45 gd.m./dm3) than phosphorus limitation in a nitrogen-rich medium (4.56 gd.m./dm3), with comparable lipid yields (30% and 32%). Regardless of the medium composition, the yeast preferentially accumulated oleic and linoleic acids as well as linolenic acid up to 8.89%. Further, it is crucial to determine the correlation between N/P molar ratios, biomass growth and efficient lipid accumulation. In particular, considering the contribution of phosphorus as a component of coenzymes in many metabolic pathways, including lipid biosynthesis and respiration processes, its importance as a factor in the cultivation of the oleaginous microorganisms was highlighted.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mergim Ramosaj ◽  
Sofia Madsen ◽  
Vanille Maillard ◽  
Valentina Scandella ◽  
Daniel Sudria-Lopez ◽  
...  

AbstractNeural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Muhammad Babar Khawar ◽  
Muddasir Hassan Abbasi ◽  
Mussarat Rafiq ◽  
Naila Naz ◽  
Rabia Mehmood ◽  
...  

Lipids are integral cellular components that act as substrates for energy provision, signaling molecules, and essential constituents of biological membranes along with a variety of other biological functions. Despite their significance, lipid accumulation may result in lipotoxicity, impair autophagy, and lysosomal function that may lead to certain diseases and metabolic syndromes like obesity and even cell death. Therefore, these lipids are continuously recycled and redistributed by the process of selective autophagy specifically termed as lipophagy. This selective form of autophagy employs lysosomes for the maintenance of cellular lipid homeostasis. In this review, we have reviewed the current literature about how lipid droplets (LDs) are recruited towards lysosomes, cross-talk between a variety of autophagy receptors present on LD surface and lysosomes, and lipid hydrolysis by lysosomal enzymes. In addition to it, we have tried to answer most of the possible questions related to lipophagy regulation at different levels. Moreover, in the last part of this review, we have discussed some of the pathological states due to the accumulation of these LDs and their possible treatments under the light of currently available findings.


Author(s):  
Guannan Liu ◽  
Guishan Peng ◽  
Jianan Dai ◽  
Ri Zhou ◽  
Chenguang Wang ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 720
Author(s):  
Angela Cattaneo ◽  
Giuseppe Martano ◽  
Umberto Restuccia ◽  
Laura Tronci ◽  
Michele Bianchi ◽  
...  

Lipidomics is the comprehensive analysis of lipids in a given biological system. This investigation is often limited by the low amount and high complexity of biological samples, therefore highly sensitive lipidomics methods are required. Nanoflow-LC/MS offers extremely high sensitivity; however, it is challenging as a more demanding maintenance is often needed compared to conventional microflow-LC approaches. Here, we developed a sensitive and reproducible lipidomics LC method, termed Opti-nQL, which can be applied to any biological system. Opti-nQL has been validated with cellular lipid extracts of human and mouse origin and with different lipid extraction methods. Among the resulting 4000 detected features, 700 and even more unique lipid molecular species have been identified covering 16 lipid sub-classes, while 400 lipids were uniquely structure defined by MS/MS. These results were obtained by analyzing an amount of lipids extract equivalent to 40 ng of proteins, being highly suitable for low abundant samples. MS analysis showed that theOpti-nQL method increases the number of identified lipids, which is evidenced by injecting 20 times less material than in microflow based chromatography, being more reproducible and accurate thus enhancing robustness of lipidomics analysis.


Cell Research ◽  
2021 ◽  
Author(s):  
Elena De Vita ◽  
Daniel Lucy ◽  
Edward W. Tate

2021 ◽  
Vol 331 ◽  
pp. e131
Author(s):  
S. Pfisterer ◽  
I.I.C. Brock ◽  
I. Hlushchenko ◽  
K. Kanerva ◽  
M.M. Islam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document