scholarly journals Time-Optimal Low-Level Control and Gearshift Strategies for the Formula 1 Hybrid Electric Powertrain

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Camillo Balerna ◽  
Marc-Philippe Neumann ◽  
Nicolò Robuschi ◽  
Pol Duhr ◽  
Alberto Cerofolini ◽  
...  

Today, Formula 1 race cars are equipped with complex hybrid electric powertrains that display significant cross-couplings between the internal combustion engine and the electrical energy recovery system. Given that a large number of these phenomena are strongly engine-speed dependent, not only the energy management but also the gearshift strategy significantly influence the achievable lap time for a given fuel and battery budget. Therefore, in this paper we propose a detailed low-level mathematical model of the Formula 1 powertrain suited for numerical optimization, and solve the time-optimal control problem in a computationally efficient way. First, we describe the powertrain dynamics by means of first principle modeling approaches and neural network techniques, with a strong focus on the low-level actuation of the internal combustion engine and its coupling with the energy recovery system. Next, we relax the integer decision variable related to the gearbox by applying outer convexification and solve the resulting optimization problem. Our results show that the energy consumption budgets not only influence the fuel mass flow and electric boosting operation, but also the gearshift strategy and the low-level engine operation, e.g., the intake manifold pressure evolution, the air-to-fuel ratio or the turbine waste-gate position.

Author(s):  
E.T. Plaksina ◽  
A.B. Syritsky ◽  
A.S. Komshin

The article considers the main methods of internal combustion engine diagnostics. A method based on measuring the time intervals between the phases of the working cycle of the mechanism is described. An algorithm for measuring the time intervals from the formulation of the problem to the proof of the efficiency of this method on an internal combustion engine has been determined. The installation of the angle sensor on the crankshaft of the experimental bench engine VAZ 21126 is shown. The basis for the construction of a mathematical model of the crankshaft is presented and the main factors influencing its movement are identified. A criterion has been established according to which the misfire is determined most accurately. The results obtained can be used for developing diagnostic systems for internal combustion engines, as well as engines operating in extreme conditions, for example, beyond the Arctic Circle, on ships, etc.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 395
Author(s):  
Jeongwoo Song ◽  
Han Ho Song

The exergy destruction due to the irreversibility of the combustion process has been regarded as one of the key losses of an internal combustion engine. However, there has been little discussion on the direct relationship between the exergy destruction and the work output potential of an engine. In this study, an analytical approach is applied to discuss the relationship between the exergy destruction and efficiency by assuming a simple thermodynamic system simulating an internal combustion engine operation. In this simplified configuration, the exergy destruction during the combustion process is mainly affected by the temperature, which supports well-known facts in the literature. However, regardless of this exergy destruction, the work potential in this simple engine architecture is mainly affected by the pressure during the combustion process. In other words, if these pressure conditions are the same, increasing the system temperature to reduce the exergy destruction does not lead to an increase in the expansion work; rather, it only results in an increase in the remaining exergy after expansion. In a typical internal combustion engine, temperatures before combustion timing must be increased to reduce the exergy destruction, but increasing pressure before combustion timing is a key strategy to increase efficiency.


2011 ◽  
Vol 128-129 ◽  
pp. 803-806 ◽  
Author(s):  
Jing Wu ◽  
Hong Yuan Zhang

The article introduces HCCI technical characteristics, existing technical problems and characteristics of the hybrid electric vehicles, analyzes application feasibility and advantages of HCCI technology for hybrid electric vehicles and proposes that HCCI technology is an effective solution for the hybrid electric vehicles in increasing economy of internal-combustion engine oil and reducing emissions and further can realize batch production of products.


2013 ◽  
Vol 52 (1) ◽  
pp. 150-159 ◽  
Author(s):  
Jianqin Fu ◽  
Jingping Liu ◽  
Yanping Yang ◽  
Chengqin Ren ◽  
Guohui Zhu

Sign in / Sign up

Export Citation Format

Share Document