scholarly journals Numerical Study of Thermal-Hydraulic Performance of a New Spiral Z-Type PCHE for Supercritical CO2 Brayton Cycle

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4417
Author(s):  
Tingting Xu ◽  
Hongxia Zhao ◽  
Miao Wang ◽  
Jianhui Qi

Printed circuit heat exchangers (PCHEs) have the characteristics of high temperature and high pressure resistance, as well as compact structure, so they are widely used in the supercritical carbon dioxide (S-CO2) Brayton cycle. In order to fully study the heat transfer process of the Z-type PCHE, a numerical model of traditional Z-type PCHE was established and the accuracy of the model was verified. On this basis, a new type of spiral PCHE (S-ZPCHE) is proposed in this paper. The segmental design method was used to compare the pressure changes under 5 different spiral angles, and it was found that increasing the spiral angle θ of the spiral structure will reduce the pressure drop of the fluid. The effects of different spiral angles on the thermal-hydraulic performance of S-ZPCHE were compared. The results show that the pressure loss of fluid is greatly reduced, while the heat transfer performance is slightly reduced, and it was concluded that the spiral angle of 20° is optimal. The local fluid flow states of the original structure and the optimal structure were compared to analyze the reason for the pressure drop reduction effect of the optimal structure. Finally, the performance of the optimal structure was analyzed under variable working conditions. The results show that the effect of reducing pressure loss of the new S-ZPCHE is more obvious in the low Reynolds number region.

Author(s):  
José Luis ZUÑIGA-CERROBLANCO ◽  
Juan Gregorio HORTELANO-CAPETILLO ◽  
Juan Carlos COLLAZO-BARRIENTOS ◽  
Abel HERNANDEZ-GUERRERO

Nowadays the automotive industry requires more powerful and compact engines, which demand that the cooling systems must be improved using new technologies to attend the aim to maintain the engine working at optimum temperature, the cooling system must be adjusted to the dimensions and weight set to avoid the increase of fuel expense. In the present work a numerical study to analyze the thermal and hydraulic performance of a car radiator is carried out. The research focuses on analyzing different geometries for the tubes that make up the radiator, inside of tubes a mixture of 80% water and 20% ethylene glycol is used as the cooling fluid. On the results the global Nusselt numbers for the different geometries, as well as the total pressure drop along the radiator tube are reported. A comparison of the thermal and hydraulic performance for the different geometries analyzed is made. From the results the best geometry to increase heat transfer is chosen, as well as the geometry with the best balance between entropy generation due to heat transfer and pressure drop is chosen.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 548 ◽  
Author(s):  
Zhongchao Zhao ◽  
Yimeng Zhou ◽  
Xiaolong Ma ◽  
Xudong Chen ◽  
Shilin Li ◽  
...  

In this paper, we study a promising plate-type heat exchanger, the printed circuit heat exchanger (PCHE), which has high compactness and is suitable for high-pressure conditions as a vaporizer during vaporization. The thermal hydraulic performance of supercritical produce liquefied natural gas (LNG) in the zigzag channel of PCHE is numerically investigated using the SST κ-ω turbulence model. The thermo-physical properties of supercritical LNG from 6.5 MPa to 10MPa were calculated using piecewise-polynomial approximations of the temperature. The effect of the channel bend angle, mass flux and inlet pressure on local convection heat transfer coefficient, and pressure drop are discussed. The heat transfer and pressure loss performance are evaluated using the Nusselt and Euler numbers. Nu/Eu is proposed to evaluate the comprehensive heat transfer performance of PCHE by considering the heat transfer and pressure drop characteristics to find better bend angle and operating conditions. The supercritical LNG has a better heat transfer performance when bend angle is less than 15° with the mass flux ranging from 207.2 kg/(m2·s) to 621.6 kg/(m2·s), which improves at bend angle of 10° and lower compared to 15° at mass flux above 414.4 kg/(m2·s). The heat transfer performance is better at larger mass flux and lower operating pressures.


Author(s):  
Inderjot Kaur ◽  
Prashant Singh ◽  
Srinath V. Ekkad

Abstract This paper presents numerical study on heat transfer enhancement due to the combination of rectangular winglet pair with V-dimples in an array-type arrangement. Array of rectangular winglet pairs results in heat transfer enhancement, however, at a cost of significant pressure drop, resulting in reduced thermal-hydraulic performance (THP). On the other hand, dimples are associated with lower heat transfer enhancement levels at relatively lower pumping power penalty. To this end, a combination of rectangular winglet pair and V-shaped dimples has been studied in this paper, where the arrangements were intended to achieve enhanced thermal-hydraulic performance. Three different configurations, namely, rectangular winglet pair, rectangular winglet pair with one V-dimple between two consecutive winglets, and rectangular winglet pair with two V-dimples packed in a pitch, are studied here. The variation of heat transfer enhancement, pressure drop gain, and THP with respect to winglet-to-winglet (S) spacing variation for rectangular winglet pair and rectangular winglet pair with one V-dimple configuration is presented at a Reynolds number of 25,000. The THP of the rectangular winglet pair configuration decreases up to S/H equal to 2.5 and then increases (H: channel height). For rectangular winglet pair with one V-dimple, three values of winglet-to-dimple (P) spacings are analyzed. For fixed S/H, the highest P/H configuration provided highest heat transfer enhancement and THP. Among the three configurations studied, rectangular winglet pair with two V-dimples resulted in the highest thermal-hydraulic performance.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1589
Author(s):  
Yuxuan Ji ◽  
Kaixiang Xing ◽  
Kefa Cen ◽  
Mingjiang Ni ◽  
Haoran Xu ◽  
...  

Printed circuit heat exchanger (PCHE) is a promising regenerative device in the sCO2 power cycle, with the advantages of a large specific surface area and compact structure. Its tiny and complex flow channel structure brings enhanced heat transfer performance, while increasing pressure drop losses. It is, thus, important to balance heat transfer and flow resistance performances with the consideration of sCO2 as the working agent. Herein, three-dimensional models are built with a full consideration of fluid flow and heat transfer fields. A trapezoidal channel is developed and its thermal–hydraulic performances are compared with the straight, the S-shape, and the zigzag structures. Nusselt numbers and the Fanning friction factors are analyzed with respect to the changes in Reynolds numbers and structure geometric parameters. A sandwiched structure that couples two hot channels with one cold channel is further designed to match the heat transfer capacity and the velocity of sCO2 flows between different sides. Through this novel design, we can reduce the pressure drop by 75% and increase the regenerative efficiency by 5%. This work can serve as a solid reference for the design and applications of PCHEs.


Author(s):  
Michael Maurer ◽  
Jens von Wolfersdorf ◽  
Michael Gritsch

An experimental and numerical study was conducted to determine the thermal performance of V-shaped ribs in a rectangular channel with an aspect ratio of 2:1. Local heat transfer coefficients were measured using the steady state thermochromic liquid crystal technique. Periodic pressure losses were obtained with pressure taps along the smooth channel sidewall. Reynolds numbers from 95,000 to 500,000 were investigated with V-shaped ribs located on one side or on both sides of the test channel. The rib height-to-hydraulic diameter ratios (e/Dh) were 0.0625 and 0.02, and the rib pitch-to-height ratio (P/e) was 10. In addition, all test cases were investigated numerically. The commercial software FLUENT™ was used with a two-layer k-ε turbulence model. Numerically and experimentally obtained data were compared. It was determined that the heat transfer enhancement based on the heat transfer of a smooth wall levels off for Reynolds numbers over 200,000. The introduction of a second ribbed sidewall slightly increased the heat transfer enhancement whereas the pressure penalty was approximately doubled. Diminishing the rib height at high Reynolds numbers had the disadvantage of a slightly decreased heat transfer enhancement, but benefits in a significantly reduced pressure loss. At high Reynolds numbers small-scale ribs in a one-sided ribbed channel were shown to have the best thermal performance.


Author(s):  
Abdulkerim Okbaz ◽  
Ali Pınarbaşı ◽  
Ali Bahadır Olcay

In the present study, 3-D numerical simulations on heat and fluid flow characteristics of double-row multi-louvered fins heat exchanger are carried out. The heat transfer improvement and the corresponding pressure drop amounts were investigated depending on louver angles in the range of 20° ≤θ≤ 30°, louver pitches of Lp = 2,7mm, 3,5mm and 3,8mm and frontal velocities of Uin between 1.22 m/s and 3 m/s. The results are reported in terms of Colburn j-factor, Fanning friction factor f and area goodness factor j/f based on louver angle, louver pitch and Reynolds number. To understand local behavior of flow around louvered fins and heat exchanger tubes, flow visualization results of velocity vectors and stream-lines with temperature counters are presented. It is investigated that increasing louver angle enhances convective heat transfer while hydraulic performance decreases due to increased pressure drop. The flow noticeably behaves louver directed for all louver angles The flow can easily travel between different fins. This case study has been done to design and manufacture an industrial louver fin heat exchanger.


Author(s):  
Moyse´s Alberto Navarro ◽  
Andre´ Augusto Campagnole dos Santos

The spacer grids exert great influence on the thermal hydraulic performance of the PWR fuel assembly. The presence of the spacers has two antagonistic effects on the core: an increase of pressure drop due to constriction on the coolant flow area and increase of the local heat transfer downstream the grids caused by enhanced coolant mixing. The mixing vanes, present in most of the spacer grid designs, cause a cross and swirl flow between and in the subchannels, enhancing even more the local heat transfer at the cost of more pressure loss. Due to this important hydrodynamic feature the spacer grids are often improved aiming to obtain an optimal commitment between pressure drop and enhanced heat transfer. In the present work, the fluid dynamic performance downstream a 5 × 5 rod bundle with spacer grids is analyzed with a commercial CFD code (CFX 11.0). Eleven different split vane spacer grids with angles from 16° to 36° and a spacer without vanes were evaluated. The computational domain extends from ∼10 Dh upstream to ∼50 Dh downstream the spacer grids. The standard k-ε turbulence model with scalable wall functions and the total energy model were used in the simulations. The results show a considerable increase of the average Nusselt number and secondary mixing with the angle of the vane up to ∼20 Dh downstream the spacer, reducing greatly the influence of the vane angle beyond this region. As expected, the pressure loss through the spacer grid also showed considerable increase with the vane angle.


Sign in / Sign up

Export Citation Format

Share Document