scholarly journals Scale Tests to Estimate Penetration Force and Stress State of the Silica Sand in Windfarm Foundations

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5904
Author(s):  
Jorge Soriano Vicedo ◽  
Javier García Barba ◽  
Jorge Luengo Frades ◽  
Vicente Negro Valdecantos

The analysis of the soil behavior when the pile is driving into the seabed in offshore wind platforms is one of the major problems associated with this new form of clean energy generation. At present, there are no scaled studies carried out analyzing the mechanical and deformational behavior of both the material of the pile supporting the engine (large steel hollow piles with a diameter of 8 m and a thickness of 15–20 cm) and the soil where the pile is driven. Usually, these elements are installed on sands with a very small grain size displaced from the limits of dry–wet beach (water limit) toward the offshore limits, which prevents them from returning to their previous location in a natural way. This paper presents results obtained from scale tests in a steel pool to analyze the behavior of the sand where the piles were installed. First, the California Bearing Ratio (CBR) test was carried out to estimate the soil behavior in similar conditions to the steel pool. The scale tests consisted of the penetration of the steel tube into the sand using a hydraulic press. The objective was to compare the results for three tubes with different diameters, three different speeds, and two kinds of ending on the extreme of the tested element.

2020 ◽  
Vol 13 (1) ◽  
pp. 265
Author(s):  
Mine Isik ◽  
P. Ozge Kaplan

A thorough understanding of the drivers that affect the emission levels from electricity generation, support sound design and the implementation of further emission reduction goals are presented here. For instance, New York State has already committed a transition to 100% clean energy by 2040. This paper identifies the relationships among driving factors and the changes in emissions levels between 1990 and 2050 using the logarithmic mean divisia index analysis. The analysis relies on historical data and outputs from techno-economic-energy system modeling to elucidate future power sector pathways. Three scenarios, including a business-as-usual scenario and two policy scenarios, explore the changes in utility structure, efficiency, fuel type, generation, and emission factors, considering the non-fossil-based technology options and air regulations. We present retrospective and prospective analysis of carbon dioxide, sulfur dioxide, nitrogen oxide emissions for the New York State’s power sector. Based on our findings, although the intensity varies by period and emission type, in aggregate, fossil fuel mix change can be defined as the main contributor to reduce emissions. Electricity generation level variations and technical efficiency have relatively smaller impacts. We also observe that increased emissions due to nuclear phase-out will be avoided by the onshore and offshore wind with a lower fraction met by solar until 2050.


Author(s):  
Chunyan Wang ◽  
Hanlong Liu ◽  
Xuanming Ding ◽  
Chenglong Wang ◽  
Qiang Ou

This paper presents the horizontal bearing characteristics of piles in coral sand and silica sand from comparative experimental studies. A total of 6 model piles with different diameters are tested. The horizontal bearing capacity, deformation characteristic, bending moment, p-y curve, the change in soil horizontal pressure, as well as the particle breakage behaviour of coral sand are investigated. The results show that, in coral sand foundation, the horizontal bearing capacities of piles and the increments of soil horizontal pressures are obviously greater than those in silica sand. Accordingly, the lateral displacement, the rotation of pile head, the bending moment and the corresponding distribution depth in coral sand are significantly smaller than that in silica sand. The p-y curves indicate that the horizontal stiffness of coral sand is greater than that of silica sand. Remarkably, the breakage behaviour of coral sand is mainly distributed in the range of 10 times pile diameter depth and 5 times pile diameter width on the side where the sand is squeezed by pile. Furthermore, in coral sand, the influence of pile size is more pronounced, the squeezing force generated by pile spread farther and its influence range is larger compared to those in silica sand.


Author(s):  
Xutian Xue ◽  
Xiaoyong Liu ◽  
Nian-Zhong Chen ◽  
Xifeng Gao

Abstract This paper aims to perform a time-domain mooring fatigue analysis for a Spar-type floating offshore wind turbine operated in the South China Sea. Tension ranges of mooring lines are achieved from a hydrodynamic analysis where the effects of wind, wave and current are considered. A rainflow counting method is used to calculate the number of mooring tension cycles with corresponding ranges. The fatigue lives of mooring lines are then predicted by Palmgren-Miner’s rule according to T-N & S-N curves. A comparison of fatigue lives predicted by T-N & S-N curves-based approaches with/without considering safety factors is made. The results show that the T-N curves-based approach is more conservative than the S-N curves-based approach if safety factors are not considered in the two approaches, while the fatigue lives predicted by both approaches are in general comparable when the safety factors suggested by API and DNVGL are applied in the two approaches. A comparative study of three kinds of R4 grade studless mooring chains with different diameters (2.5-inch, 4-inch, 5-inch) is also conducted and the results show that the design with the 2.5-inch chain does not meet the fatigue requirements.


2020 ◽  
Vol 857 ◽  
pp. 417-430
Author(s):  
Kazem Fakharian ◽  
Farzad Kaviani Hamedani

It is widely accepted that soil behavior is complicated taking into account soil anisotropy owing to the fact that this phenomenon arises from oriented soil fabric or structure forged in the deposition stage. In this study, a review of major findings of authors’ previous studies are presented with the main focus on soil anisotropy using extensive experimental results incuding Triaxial (TXT), Simple Shear (SSA), and Hollow Cylinder (HCA) apparatus. Effects of initial anisotropy, fabric evolution, stress path, principal stress rotation and intermediate stress state are evaluated for a crushed silica sand. In addition, the effects of Portland cement content and granulated rubber contents on anisotropic behavior of the sand are investigated. Bender elments are mounted on triaxial specimens both in vertical and horizontal directions to measure the shear wave velocity and hence maximum shear modulus at the end of consolidation as well as during shearing up to large strains at critical state condition, as an index of evaluating the fabric evolution. The effects of principal stress rotation and stress paths reveals the crucial role of soil anisotropy on the behavior of clean sand. However, adding either cement or granulated rubber to the sand has considerably decreased anisotropy.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Stanislav Kotšmíd ◽  
Chang-Hung Kuo ◽  
Pavel Beňo

The purpose of this paper is to determine a critical load for a nonuniform circular steel tube under eccentrically axial load. The circular tube has variable cross section at flattened ends with existing holes used for connection between members. Three different cases of eccentricities are studied with the drilled holes either on the same side or on the opposite side of column axis. The critical load is calculated from the differential equation of deflection curve which is solved by the power series and Runge-Kutta method. In addition, the loading tests were performed on a total of 180 specimens with different diameters, slenderness, and connection. The calculated results are compared and shown in a good agreement with those obtained from the experimental results. The results also show that the critical load decreases rapidly even at a small value of eccentricity and thus may have a significant effect on the load-carrying capacity.


Author(s):  
Y. H. Bae ◽  
M. H. Kim ◽  
Q. Yu ◽  
J. K. Heo

Increasing numbers of FOWTs (floating offshore wind turbines) are planned in the coming years due to their high potential in massive generation of clean energy from ocean-wind. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of an FOWT system in time domain including aero-loading, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. Hywind spar design with 5MW turbine is selected as an example, and two different environmental conditions, maximum operational and survival conditions, are applied for this study. The maximum operational condition means the maximum environmental condition that wind turbine can work normally, and the survival condition represents the extreme situation without any blade-turbine operation. Through this study, it is seen that the design environments for different structural components of FOWT can be different. The developed technology and numerical tool are readily applicable to the design of any future FOWTs in any combinations of irregular waves, dynamic winds, and steady currents.


Author(s):  
Y. H. Bae ◽  
M. H. Kim

Increasing numbers of floating offshore wind turbines (FOWTs) are planned in the coming years due to their high potential in the massive generation of clean energy from ocean wind. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of an FOWT system in the time domain including aero-loading, tower/blade elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of aero-elastic-control dynamics on the hull-mooring performance and vice versa can be assessed. The Hywind spar design with a 5 MW National Renewable Energy Laboratory (NREL) turbine is selected as an example and two different collinear wind-wave-current environmental conditions, maximum operational and survival conditions, are applied for this study. The maximum operational condition means the maximum environmental condition with normal blade-turbine operation and the survival condition represents the extreme situation without any blade-turbine operation. Through this study, it is seen that the ultimate-loading environments for different structural components of the FOWT can be different. The developed technology and numerical tool are readily applicable to the design of any type of future FOWTs in any combinations of irregular waves, dynamic winds, and steady currents.


2018 ◽  
Vol 143 ◽  
pp. 111-129 ◽  
Author(s):  
Sarah C. Klain ◽  
Terre Satterfield ◽  
Jim Sinner ◽  
Joanne I. Ellis ◽  
Kai M.A. Chan

Web Ecology ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Takvor Soukissian ◽  
Sofia Reizopoulou ◽  
Paraskevi Drakopoulou ◽  
Panagiotis Axaopoulos ◽  
Flora Karathanasi ◽  
...  

Abstract. The development of offshore wind farms (OWFs) and the establishment of marine protected areas (MPAs) comprise two main elements for the production of clean energy, and the simultaneous maintenance and protection of biodiversity in the Mediterranean and Black seas. Successful, efficient, and sustainable coupling of these two aspects presumes that the criteria for selecting suitable locations for the deployment of OWFs should not only include technical-engineering terms (e.g. high wind energy efficiency, bottom suitability, inland infrastructures) but also ecological–environmental considerations (e.g. the least possible impact on biodiversity, ecosystem functioning) and socio-economic aspects (e.g. effects on coastal and marine activities, development of marine spatial planning). In the context of the FP7 CoCoNet project, the integration between OWFs and MPAs is based on four main steps: (i) the identification of existing (networks of) MPAs focusing on the biodiversity distribution patterns and current legislation, (ii) the coupling of offshore wind potential within networks of MPAs, (iii) the evaluation of the knowledge gained up to date and the theoretical approaches at the two pilot sites of the Mediterranean and Black sea basins, and (iv) the development of the "Smart Wind Chart", a convenient and rational tool addressed to scientists and policy makers for the evaluation of maritime policy management schemes. The latter step comprises the core of this work.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
M. Mirmanto ◽  
IGNK Yudhyadi ◽  
Emmy Dyah Sulistyowati

Experiments have been performed to investigate the effect of channel roughness and diameter on fluid friction. Three different diameters and roughness of tubes were used to examine the friction factor. The first tube made of stainless steel with an inner diameter of 1.14 mm was investigated at Brunel University, whilst the others made of PVC with diameters of 17 mm and 15.5 mm rough were tested at Mataram University. The stainless steel was equipped with a 200 mm calming section and smooth one. The 15.5 mm diameter tube was coated internally with sand that had an average grain size of 0.5 mm so that the tube had a relative roughness of 0.032.  The last tube with a diameter of 17 mm was smooth as explained  in the H408 Fluid Friction Experimental Apparatus manual.            The results indicate that the flow in the stainless steel tube still obeys the theory and in the 17 mm tube shows a deviation in friction factor with the theory. However, this was due to no calming section installed in the test rig. Flow in the rough tube (15.5 mm diameter) demonstrates that the Reynolds number does not affect the friction factor in turbulent regimes and the experimental friction factors were reasonably in a good agreement with the theory or Moody diagram. Hence, the effect of decreasing in diameter of channels on friction factor is insignificant.


Sign in / Sign up

Export Citation Format

Share Document