scholarly journals Experimental Study on the Stabilization Mechanism of Diffusion Flames in a Curved Impinging Spray Combustion Field in a Narrow Region

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7171
Author(s):  
Hideo Kawahara ◽  
Konosuke Furukawa ◽  
Koichiro Ogata ◽  
Eiji Mitani ◽  
Koji Mitani

HVAF (High Velocity Air Flame) flame spraying can generate supersonic high-temperature gas jets, enabling thermal spraying at unprecedented speeds. However, there is a problem with the energy cost of this device. This study focused on combustors that used cheap liquid fuel (kerosene) as the fuel for HVAF. In this research, we have developed a compact combustor with a narrow channel as a heat source for the HVAF heat atomizer. Using this combustor, the stability of the flame formed in the combustor, the morphology of the flame, and the temperature behavior in the combustion chamber were investigated in detail. As a result, the magnitude of the swirling airflow had a great influence on the structure of the flame formed in the combustor, and the stable combustion range of the combustor could be determined. As the swirling air flow rate changes, the equivalent ratio of the entire combustor changes significantly, and the flame structure also transition from the premixed flame to the diffusion flame. From this study, it was confirmed that the temperature inside the combustor has great influence on the flame structure.

2012 ◽  
Vol 533 ◽  
pp. 99-114 ◽  
Author(s):  
A. Killinger ◽  
R. Gadow

Thermal Spraying of submicron and nanoscaled powder materials require the application of agglomerated powders that can be processed with standard HVOLF (High Velocity Oxy Liquid Fuel Flame Spraying) equipment, or the conversion of these powders into a finely dispersed suspension together with an organic solvent, appropriate for suspension spraying (HVSFS: High Velocity Suspension Flame Spraying). Both methods are suitable for the manufacturing of finely structured and dense coatings and offer new possibilities in functional coating development for new application fields. Due to their refined microstructure, mechanical and physical coating properties can differ significantly from their conventionally sprayed counterparts. The paper gives an overview of HVOLF sprayed WC-Co cermets containing submicron and nanocarbides and HVSF sprayed nanooxide ceramics used in numerous technical applications.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


2014 ◽  
Vol 745 ◽  
pp. 647-681 ◽  
Author(s):  
Yee Chee See ◽  
Matthias Ihme

AbstractLocal linear stability analysis has been shown to provide valuable information about the response of jet diffusion flames to flow-field perturbations. However, this analysis commonly relies on several modelling assumptions about the mean flow prescription, the thermo-viscous-diffusive transport properties, and the complexity and representation of the chemical reaction mechanisms. In this work, the effects of these modelling assumptions on the stability behaviour of a jet diffusion flame are systematically investigated. A flamelet formulation is combined with linear stability theory to fully account for the effects of complex transport properties and the detailed reaction chemistry on the perturbation dynamics. The model is applied to a methane–air jet diffusion flame that was experimentally investigated by Füriet al.(Proc. Combust. Inst., vol. 29, 2002, pp. 1653–1661). Detailed simulations are performed to obtain mean flow quantities, about which the stability analysis is performed. Simulation results show that the growth rate of the inviscid instability mode is insensitive to the representation of the transport properties at low frequencies, and exhibits a stronger dependence on the mean flow representation. The effects of the complexity of the reaction chemistry on the stability behaviour are investigated in the context of an adiabatic jet flame configuration. Comparisons with a detailed chemical-kinetics model show that the use of a one-step chemistry representation in combination with a simplified viscous-diffusive transport model can affect the mean flow representation and heat release location, thereby modifying the instability behaviour. This is attributed to the shift in the flame structure predicted by the one-step chemistry model, and is further exacerbated by the representation of the transport properties. A pinch-point analysis is performed to investigate the stability behaviour; it is shown that the shear-layer instability is convectively unstable, while the outer buoyancy-driven instability mode transitions from absolutely to convectively unstable in the nozzle near field, and this transition point is dependent on the Froude number.


2007 ◽  
Vol 342-343 ◽  
pp. 505-508
Author(s):  
Sung Won Kim ◽  
Yun Sik Nam ◽  
Yeon Jin Min ◽  
Jong Ho Kim ◽  
Kwang Meyong Kim ◽  
...  

Stability and disintegration of natural polyelectrolyte complex microspheres for protein drugs delivery have been extensively investigated because of their great influence on the drug release patterns. In this study, we tested stability of microspheres with alginate (Alg) core layered by either chitosan (Chi) or glycol chitosan (GChi) by examining release profiles of fluorophorelabeled bovine serum albumin (BSA) and lysozyme (Lys) from the microspheres. While GChi shell was disintegrated quickly, Chi-shell microspheres showed good stability in PBS. Disintegration of the coated layer induced the core material instable. The results indicated that while the charges of the shell material provided additional diffusion barrier against the protein release, the key factor to hold the proteins inside the microspheres was the integrity of the outer coating layer.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750310 ◽  
Author(s):  
Jia-Ning Li ◽  
San-Lue Hu ◽  
Hao-Yu Dong ◽  
Xiao-Ying Xu ◽  
Jia-Fu Wang ◽  
...  

Under the tuning of an external electric field, the variation of the geometric structures and the band gaps of the wurtzite semiconductors ZnS, ZnO, BeO, AlN, SiC and GaN have been investigated by the first-principles method based on density functional theory. The stability, density of states, band structures and the charge distribution have been analyzed under the electric field along (001) and (00[Formula: see text]) directions. Furthermore, the corresponding results have been compared without the electric field. According to our calculation, we find that the magnitude and the direction of the electric field have a great influence on the electronic structures of the wurtzite materials we mentioned above, which induce a phase transition from semiconductor to metal under a certain electric field. Therefore, we can regulate their physical properties of this type of semiconductor materials by tuning the magnitude and the direction of the electric field.


2007 ◽  
Vol 26-28 ◽  
pp. 715-718
Author(s):  
Bong Hwan Kim ◽  
Sang Mok Lee

Al-Cu-Fe-B quasicrystalline and Mo coatings were obtained on the mild steel and brass substrates by thermal spraying routes for the purpose of replacement of Mo coatings with quasicrystalline ones. Quasicrystalline coatings were prepared by air plasma spraying and/or HVOF (High Velocity Oxygen Fuel) techniques followed by subsequent heat treatment, and Mo coatings, wire flame spraying. For comparative studies of important properties for industrial application, mechanical properties, bonding strength, surface energy, and tribological behavior were investigated based on microstructural characterization. Basic mechanical properties such as hardness, fracture toughness, and elastic modulus of quasicrystalline coating showed comparable values with those of Mo coatings. De-bonding tests of coatings deposited onto brass substrate indicated that the bonding strength of quasicrystalline coatings obtained by HVOF techniques exhibit higher value to Mo coatings. Non-sticking property analogized from surface energy calculation and friction coefficient of quasicrystalline coatings also showed better performance during the tests. It is suggested from this investigation that the quasicrystalline coating can be effectively used as a replacement of the Mo coating, which has shown a recent steep price rise and problems of accidental existence of minor environment harmful elements such as Cr6+, Pb, Cd, and Hg.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Zhu ◽  
Guang-chao Wang ◽  
Qing-peng Han ◽  
An-lei Zhao ◽  
Jian-xing Ren ◽  
...  

Rotor rub-impact has a great influence on the stability and safety of a rotating machine. This study develops a dynamic model of a two-span rotor-bearing system with rubbing faults, and numerical simulation is carried out. Moreover, frictional screws are used to simulate a rubbing state by establishing a set of experimental devices that can simulate rotor-stator friction in the rotor system. Through the experimental platform and its analysis system, the rubbing experiment was conducted, and the vibration of the rotor-bearing system before and after the critical speed is observed. Rotors running under normal condition, local slight rubbing, and severe rubbing throughout the entire cycle are simulated. Dynamic trajectories, frequency spectrum diagrams, chart of axis track, and Poincare maps are used to analyze the features of the rotor-bearing system with rub-impact faults under various parameters. The vibration characteristics of rub impact are obtained. Results show that the dynamic characteristics of the rotor-bearing system are affected by the change in velocity and degree of impact friction. The findings are helpful in further understanding the dynamic characteristics of the rub-impact fault of the two-span rotor-bearing system and provide reference for fault diagnosis.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
Chuanzheng Liu ◽  
Gang Wang ◽  
Wei Han

The slip surface is an important control structure surface existing in the landslide. It not only directly affects the stability of the slope through the strength, but also affects the stress field by affecting the propagation of the stress wave. Many research results have been made on the influence of non-continuous stress wave propagation in rock and soil mass and the dynamic response to seismic slopes. However, the effect of the continuity of the slip surface on the slope dynamic stability needs further researches. Therefore, in this paper, the effect of slip surface on the slope’s instantaneous safety factor is analyzed by the theoretical method with the infinite slope model. Firstly, three types of slip surface model were established, to realize the change of sliding surface continuity in the infinite slope. Then, based on wave field analysis, the instantaneous safety factor was used to analyze the effect of continuity of slip surface. The results show that with the decreasing of slip surface continuity, the safety factor does not simply increase or decrease, and is related to slope features, incident wave and continuity of slip surface. The safety factor does not decrease monotonically with the increasing of slope angle and thickness of slope body. Moreover, the reflection of slope surface has a great influence on the instantaneous safety factor of the slope. Research results in this paper can provide some references to evaluate the stability of seismic slope, and have an initial understanding of the influence of structural surface continuity on seismic slope engineering.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 731-739 ◽  
Author(s):  
Bo Hang Wang ◽  
Dao Bo Wang ◽  
Zain Anwar Ali ◽  
Bai Ting Ting ◽  
Hao Wang

Attitude, speed, and position of unmanned aerial vehicles are susceptible to wind disturbance. The types, characteristics, and mathematical models of the wind, which have great influence on unmanned aerial vehicle in the low-altitude environment, are summarized, including the constant wind, turbulent flow, many kinds of wind shear, and the propeller vortex. Combined with the mathematical model of the unmanned aerial vehicle, the mechanism of unmanned aerial vehicle movement in the wind field is illustrated from three different kinds of viewpoints including velocity viewpoint, force viewpoint, and energy viewpoint. Some simulation tests have been implemented to show the effects of different kinds of wind on unmanned aerial vehicle’s path and flight states. Finally, some proposals are presented to tell reader in which condition, which wind model should be added to simulation, and how to enhance the stability of unmanned aerial vehicle for different kinds of wind fields.


Sign in / Sign up

Export Citation Format

Share Document