narrow channel
Recently Published Documents


TOTAL DOCUMENTS

877
(FIVE YEARS 158)

H-INDEX

37
(FIVE YEARS 6)

2021 ◽  
Vol 11 (24) ◽  
pp. 11777
Author(s):  
Zhenping Wu ◽  
Zhijun Meng ◽  
Wenlong Zhao ◽  
Zhe Wu

As a sampling-based pathfinding algorithm, Rapidly Exploring Random Trees (RRT) has been widely used in motion planning problems due to the ability to find a feasible path quickly. However, the RRT algorithm still has several shortcomings, such as the large variance in the search time, poor performance in narrow channel scenarios, and being far from the optimal path. In this paper, we propose a new RRT-based path find algorithm, Fast-RRT, to find a near-optimal path quickly. The Fast-RRT algorithm consists of two modules, including Improved RRT and Fast-Optimal. The former is aims to quickly and stably find an initial path, and the latter is to merge multiple initial paths to obtain a near-optimal path. Compared with the RRT algorithm, Fast-RRT shows the following improvements: (1) A Fast-Sampling strategy that only samples in the unreached space of the random tree was introduced to improve the search speed and algorithm stability; (2) A Random Steering strategy expansion strategy was proposed to solve the problem of poor performance in narrow channel scenarios; (3) By fusion and adjustment of paths, a near-optimal path can be faster found by Fast-RRT, 20 times faster than the RRT* algorithm. Owing to these merits, our proposed Fast-RRT outperforms RRT and RRT* in both speed and stability during experiments.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8262
Author(s):  
Delphin Raj Kesari Mary ◽  
Eunbi Ko ◽  
Seung-Geun Kim ◽  
Sun-Ho Yum ◽  
Soo-Young Shin ◽  
...  

Owing to the hasty growth of communication technologies in the Underwater Internet of Things (UIoT), many researchers and industries focus on enhancing the existing technologies of UIoT systems for developing numerous applications such as oceanography, diver networks monitoring, deep-sea exploration and early warning systems. In a constrained UIoT environment, communication media such as acoustic, infrared (IR), visible light, radiofrequency (RF) and magnet induction (MI) are generally used to transmit information via digitally linked underwater devices. However, each medium has its technical limitations: for example, the acoustic medium has challenges such as narrow-channel bandwidth, low data rate, high cost, etc., and optical medium has challenges such as high absorption, scattering, long-distance data transmission, etc. Moreover, the malicious node can steal the underwater data by employing blackhole attacks, routing attacks, Sybil attacks, etc. Furthermore, due to heavyweight, the existing privacy and security mechanism of the terrestrial internet of things (IoT) cannot be applied directly to UIoT environment. Hence, this paper aims to provide a systematic review of recent trends, applications, communication technologies, challenges, security threats and privacy issues of UIoT system. Additionally, this paper highlights the methods of preventing the technical challenges and security attacks of the UIoT environment. Finally, this systematic review contributes much to the profit of researchers to analyze and improve the performance of services in UIoT applications.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8158
Author(s):  
Pavel Psota ◽  
Gramoz Çubreli ◽  
Jindřich Hála ◽  
David Šimurda ◽  
Petr Šidlof ◽  
...  

This paper presents a very effective interference technique for the sensing and researching of compressible fluid flow in a wind tunnel facility. The developed technique is very sensitive and accurate, yet easy to use under conditions typical for aerodynamic labs, and will be used for the nonintrusive investigation of flutter in blade cascades. The interferometer employs a high-speed camera, fiber optics, and available “of-the-shelf” optics and optomechanics. The construction of the interferometer together with the fiber optics ensures the high compactness and portability of the system. Moreover, single-shot quantitative data processing based on introducing a spatial carrier frequency and Fourier analysis allows for almost real-time quantitative processing. As a validation case, the interferometric system was successfully applied in the research of supersonic compressible fluid discharge from a narrow channel in a wind tunnel. Density distributions were quantitatively analyzed with the spatial resolution of about 50 μm. The results of the measurement revealed important features of the flow pattern. Moreover, the measurement results were compared with Computational Fluid Dynamics (CFD) simulations with a good agreement.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 434
Author(s):  
Assetbek Ashirbekov ◽  
Bagdagul Kabdenova ◽  
Ernesto Monaco ◽  
Luis R. Rojas-Solórzano

The original Shan-Chen’s pseudopotential Lattice Boltzmann Model (LBM) has continuously evolved during the past two decades. However, despite its capability to simulate multiphase flows, the model still faces challenges when applied to multicomponent-multiphase flows in complex geometries with a moderately high-density ratio. Furthermore, classical cubic equations of state usually incorporated into the model cannot accurately predict fluid thermodynamics in the near-critical region. This paper addresses these issues by incorporating a crossover Peng–Robinson equation of state into LBM and further improving the model to consider the density and the critical temperature differences between the CO2 and water during the injection of the CO2 in a water-saturated 2D homogeneous porous medium. The numerical model is first validated by analyzing the supercritical CO2 penetration into a single narrow channel initially filled with H2O, depicting the fundamental role of the driving pressure gradient to overcome the capillary resistance in near one and higher density ratios. Significant differences are observed by extending the model to the injection of CO2 into a 2D homogeneous porous medium when using a flat versus a curved inlet velocity profile.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012016
Author(s):  
S A Isaev ◽  
N I Mikheev ◽  
N S Dushin ◽  
A E Goltsman ◽  
D V Nikushchenko ◽  
...  

Abstract Experimental measurements and numerical predictions of the longitudinal component of the air velocity in a narrow channel with two rows of 26 densely packed oval trenches at angles of ±45° and ±135° in laminar (Re=103) and turbulent (Re=4×103) regimes have been compared. The acceptability of the RANS approach using the modified SST turbulence model within the Rodi–Leschziner–Isaev approach has been substantiated. The flow acceleration in the dimpled channel up to the longitudinal velocity maxima of 1.85 and 1.55 of the average bulk velocity for laminar and turbulent air flows has been experimentally confirmed.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012018
Author(s):  
S A Isaev ◽  
A I Leontiev ◽  
E E Son ◽  
S V Guvernyuk ◽  
M A Zubin ◽  
...  

Abstract At the stands of Research Institute of Mechanics at the Moscow State University, we experimentally confirmed the mechanism of anomalous intensification of the separation flow and heat exchange in inclined oval-trench dimples (OTD) on the plate, which was discovered during numerical studies. The measured static pressure differences in single OTD at Re=6.7×104 are in good agreement with the numerical forecasts within the framework of the RANS approach at Re=104.


Sign in / Sign up

Export Citation Format

Share Document