scholarly journals The Effect of Afterbody Geometry on Passenger Vehicles in Platoon

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7553
Author(s):  
Hesham Ebrahim ◽  
Robert Dominy

It is well known that platoons of closely spaced passenger cars can reduce their aerodynamic drag yielding substantial savings in energy consumption and reduced emissions as a system. Most published research has focused on platoons of identical vehicles which can arguably be justified by some evidence that geometric variety has little to no effect on the overall flow characteristics in platoons of three vehicles or more. It is known that much of the aerodynamic benefit from platooning is gained by the leading two cars, so operating as vehicle pairs could potentially achieve similar environmental benefits whilst addressing many of the practical challenges associated with the safe operation of long platoons on public roads. However, it has been reported that unlike long platoons, the effect of geometry and arrangement is critical if the drag reduction of a pair is to be optimised. This paper describes a parametric study based on three geometric variants of the popular DrivAer model with different combinations and spacings. It is confirmed that vehicle geometry crucially affects the results with the best combinations matching those of long platoons and others creating a net drag increase.

Author(s):  
Salman Javed ◽  
Farhan Javed ◽  
Samsher

An appendage is a boat tail which is installed at the rear section of the passenger car. An inflatable appendage has been developed to reduce the aerodynamic drag experienced by passenger cars. It can be inflated when driving under high-speed conditions and deflated while parking. In this study, an appendage is designed to maintain the streamlined rear body configuration and reduce flow separation. The profile of this aerodynamic device is based on several mathematical curves such as kappa curve, lame curve, catenary curve and aerofoil curve. Four types of boat tailing devices with different lengths and profiles were installed, and computational fluid dynamics (CFD) analysis was performed under moving ground conditions. The primary objective of this study is to find an optimum shape for the appendage and explain the aerodynamic drag reduction mechanism. Comparisons between the base model and modified models were made on the basis of the coefficient of drag, pressure contours, velocity contours, velocity streamlines and pressure distribution plot. It is shown that significant drag reduction can be obtained with the proposed aerodynamic device. Improvement in fuel efficiency varies based on the profile of add-on device. It is shown numerically that the aerodynamic performance is improved by 18.8% compared to the base model. As a result, the fuel consumption of the modified sedan reduces by 4.5%.


Author(s):  
Christoffer Landstro¨m ◽  
Lennart Lo¨fdahl

Passenger cars represent the largest part of all means of personal transportation today. Thus, it is important to work towards reduced energy consumption of cars if a sustainable mobility is to be achieved. This involves many aspects of vehicle engineering; one of them being aerodynamics. This study focuses on aerodynamic drag and the contributions from the wheels at different cooling air flow configurations. Wheels and wheel housings are important for the overall aerodynamic drag on passenger cars. It has been shown that as much as 25% of the aerodynamic drag originates from these components. Therefore, it is desirable to understand the flow structures related to the wheels and wheel housings, and how they interact with other important flow regions. This paper presents an investigation of the effects of wheel designs on aerodynamic drag at different cooling air flow configurations on a sedan type passenger car. Comparisons between numerical simulations and wind tunnel measurements are made for some of the configurations as well. Several additional wheel configurations were investigated numerically to further investigate the flow structures at the front and rear wheels. The numerical results show that the effects of radial wheel covering varied noticeably with cooling air flow configuration. In two of the configurations this resulted in a net drag increase with closed cooling air inlets. The best configuration with closed cooling air inlets generated an overall drag reduction of 29 drag counts compared with the numerical baseline with open cooling air inlets. In addition to the obvious drag reduction of closing the cooling air inlets, the main reasons for the additional decrease was limiting the drag increase at the front stagnation region and positive interference effects along the underbody and vehicle base.


2013 ◽  
Vol 307 ◽  
pp. 186-191 ◽  
Author(s):  
Peng Guo ◽  
Xing Jun Hu ◽  
Yun Yun Zhu ◽  
Qiang Fu ◽  
Xin Yu Wang ◽  
...  

Aerodynamic drag reduction of commercial truck at high speed is one of the important ways to reduce its energy consumption. CFD simulation and wind tunnel tests are performed on a kind of commercial truck, to study the influence of the cab shape and different kinds of guide cowls on aerodynamic drag, and the impact mechanism was also analyzed. It shows that the cab shape will make great contributions to the aerodynamic drag while the truck travelling, and through improving the shape of cab, guiding the air flow passed, it can effectively reduce the aerodynamic drag and achieve energy saving.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 365
Author(s):  
Zhendong Yang ◽  
Yifeng Jin ◽  
Zhengqi Gu

To reduce aerodynamic drag of a minivan, non-smooth surfaces are applied to the minivan’s roof panel design. A steady computational fluid dynamics (CFD) method is used to investigate the aerodynamic drag characteristics. The accuracy of the numerical method is validated by wind tunnel test. The drag reduction effects of rectangle, rhombus and arithmetic progression arrangement for circular concaves are investigated numerically, and then the aerodynamic drag coefficient of the rectangle arrangement with a better drag reduction effect is chosen as the optimization objective. Three parameters, that is, the diameter D of the circular concave, the width W and the longitudinal distance L among the circular concaves, are selected as design variables. A 20-level design of an experimental study using a Latin Hypercube scheme is conducted. The responses of 20 groups of sample points are obtained by CFD simulation, based on which a Kriging model is chosen to create the surrogate-model. The multi-island genetic algorithm is employed to find the optimum solution. The result shows that maximum drag reduction effects up to 7.71% can be achieved with a rectangle circular concaves arrangement. The reduction mechanism of the roof with the circular concaves was discussed. The circular concaves decrease friction resistance of the roof and change the flow characteristics of the recirculation area in the wake of the minivan. The roof with the circular concaves reduces the differential pressure drag of the front and rear of the minivan.


2012 ◽  
Author(s):  
Seung-On Kang ◽  
Jun-Ho Cho ◽  
Sang-Ook Jun ◽  
Hoon-Il Park ◽  
Ki-Sun Song ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3912
Author(s):  
Wassim Salameh ◽  
Jalal Faraj ◽  
Elias Harika ◽  
Rabih Murr ◽  
Mahmoud Khaled

In the context of a world energy crisis, the only solution to control the situation is in the management of energy. One of the most important management keys is the optimization of electrical components. This article presents a complete numerical and experimental study aiming for the optimization of electrical water heaters for household use. The optimization conceives the minimization of energy consumption simultaneously with the minimization of time to heat water. Firstly, a thermal model well adapted for the case of heaters is constructed and validated experimentally and then a parametric study is conducted covering all the input power, the volume and the external area of the heater. Results are promising, showing significant energy savings are possible with an optimum setting of these parameters, thus presenting a firm tool for the optimization of heaters.


Author(s):  
Fu-qiang Chen ◽  
Zhi-xin Gao ◽  
Jin-yuan Qian ◽  
Zhi-jiang Jin

In this paper, a new high multi-stage pressure reducing valve (HMSPRV) is proposed. The main advantages include reducing noise and vibration, reducing energy consumption and dealing with complex conditions. As a new high pressure reducing valve, its flow characteristics need to be investigated. For that the valve opening has a great effect on steam flow, pressure reduction and energy consumption, thus different valve openings are taken as the research points to investigate the flow characteristics. The analysis is conducted from four aspects: pressure, velocity, temperature fields and energy consumption. The results show that valve opening has a great effect on flow characteristics. No matter for pressure, velocity or temperature field, the changing gradient mainly reflects at those throttling components for all valve openings. For energy consumption, in the study of turbulent dissipation rate, it can be found that the larger of valve opening, the larger of energy consumption. It can be concluded that the new high multi-stage pressure reducing valve works well under complex conditions. This study can provide technological support for achieving pressure regulation, and benefit the further research work on energy saving and multi-stage design of pressure reducing devices.


Author(s):  
Bahram Khalighi ◽  
Joanna Ho ◽  
John Cooney ◽  
Brian Neiswander ◽  
Thomas C. Corke ◽  
...  

The effect of plasma flow control on reducing aerodynamic drag for ground vehicles is investigated. The experiments were carried out for a simplified ground vehicle using single dielectric barrier discharge (SDBD) plasma actuators. The plasma actuators were designed to alter the flow structure in the wake region behind the vehicle. The Ahmed body was modified to allow eight different vehicle geometries (with backlight or slant angles of 0° and 35°). Each of these were further modified by rounding the edges with different radii. Flow visualizations such as particle streams and surface oil were used to quantify features of the local flow field. The drag on the models was measured using a force balance as well as by integrating the mean velocity profiles in the model wakes. The results indicated that flow modifications needed to be applied symmetrically (upper to lower and/or side to side). This was demonstrated with the 0° backlight angle (square-back) that had all four side-corners rounded. Plasma actuators were applied to all four of the rounded edges to enhance the ability to direct the flow into the wake. Wake measurements showed that steady actuation at a fixed actuator voltage reduced the drag by an average of 20% at the lower velocities (below 15 m/s) and by 3% at the highest velocity tested (20 m/s). Model constraints prevented increasing the plasma actuator voltage that was needed to maintain the higher drag reduction observed at the lower speeds.


2021 ◽  
Vol 12 (2) ◽  
pp. 33-44
Author(s):  
Volodymyr Volkov ◽  
◽  
Igor Gritsuk ◽  
Tetiana Volkova ◽  
Volodymyr Kuzhel ◽  
...  

The article is devoted to the study of the influence of the brake control elements of passenger vehicles on the stability of their braking properties. The analysis of the influence of uneven braking forces on the wheels of one axle of vehicles on the deviation of the distribution of braking forces between the axles from its calculated value is carried out. When assessing the error in regulating the distribution of braking forces between the axles of vehicles, three components were taken into account: the theoretical error due to the imperfection of the selected control method (the difference between the actual calculated control characteristic from the ideal), the error created due to the instability of the ratio of the braking forces on the front and rear wheels, an additional error caused by the unevenness of the braking forces on the wheels of individual axles, since the fulfillment of the most stringent requirements of international and national standards for the efficiency of braking of vehicles and is inextricably linked with the need to increase the energy consumption of brake mechanisms. The energy consumption of braking mechanisms is understood as the ability of the latter to dissipate the greatest amount of energy of the braking machine without reducing the braking efficiency indicators to the minimum permissible level. Excessive heating of the braking mechanisms leads to a decrease in the friction coefficient μ of the friction surfaces and increased wear of the friction linings, and the brakes are the most unstable element of the braking control, which ensures the absorption and dissipation of the vehicle's energy during braking. The instability of the braking torques on the front and rear wheels, caused by a change in the coefficients of friction of friction pairs, leads not only to a change in the distribution of braking forces between the axles and individual wheels, but also to a decrease in the braking efficiency of vehicles under operating conditions. A method is proposed that makes it possible to assess the quality of regulation of the distribution of braking forces between the axles of a car, taking into account the instability of the braking forces on the wheels.


Sign in / Sign up

Export Citation Format

Share Document