scholarly journals Analysis and Revision of Torque Formula for Hydro-viscous Clutch

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7884
Author(s):  
Xiangping Liao ◽  
Shuai Yang ◽  
Dong Hu ◽  
Guofang Gong

Hydro-viscous clutch is a speed-regulating device for heavy fans and water pumps. It has important engineering significance in the fields of soft-start for rotating machinery. More and more attention has been paid to its torque and control characteristics. This paper is focused on the torque formula for hydro-viscous clutch (HVC), assuming that multi-friction plates distribute ununiformly with different oil film thickness. A mathematical model of friction plates was constructed, then the distribution formula of the oil film thickness was obtained. A new expression was presented using a modified factor. Parameters such as pressure, viscous torque, and oil film thickness were obtained. The results show that each clearance of friction plates is not the same and the distribution of oil film thickness is influenced by pressing force, groove depth, angular ratio of groove/non-groove, and static friction force. To verify the proposed expression, relevant experiments were carried out on an HVC with multi-friction plates, and the experimental results indicate that the new expression is more accurate compared to the original one.

2018 ◽  
Vol 70 (3) ◽  
pp. 463-473 ◽  
Author(s):  
Fangwei Xie ◽  
Jie Zhu ◽  
Jianzhong Cui ◽  
Xudong Zheng ◽  
Xinjian Guo ◽  
...  

Purpose The purpose of this paper is to study the dynamic transmission of the oil film in soft start process of hydro-viscous drive (HVD) between the friction pairs with consideration of surface roughness, and obtain the distribution law of temperature, velocity, pressure, shear stress and viscous torque of the oil film. Design/methodology/approach The revised soft-start models of HVD were derived and calculated, including average Reynolds equation, asperity contact model, load force model and total torque model. Meanwhile, a 2D model of the oil film between friction pair was built and solved numerically using computational fluid dynamics (CFD) technique in FLUENT. Findings The results show that the maximum temperature gradually reduces from the intermediate range (z = 0.5 h) to the inner side of the friction pair along the direction of oil film thickness. As the soft-start process continues, pressure gradient along the direction of the oil film thickness gradually changes to zero. In addition, tangential velocity increases and yet radial velocity decreases with the increase of the radius. Originality/value In this paper, it was found that the viscous torque calculated by the numerical method is smaller than that by the CFD model, but their overall trend is almost the same. This also demonstrates the effectiveness of the numerical simulation.


2010 ◽  
Vol 44-47 ◽  
pp. 697-701
Author(s):  
Gui Hua Han ◽  
Ya Ping Wang ◽  
Yan Chun Zhong ◽  
Jun Peng Shao ◽  
Xiao Dong Yu ◽  
...  

A scheme of improving performance of hydrostatic journal support was presented, that is, control journal support pose by controlling flow of four controllable chambers and Coupling various oil film thickness, to assure journal support expected pose; Chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal results of journal support. The mathematical model of the controllable chambers flow, servo variable mechanism and controller were built; the pose control model was established, which contain the kinematics positive and negative solution and control strategy of hydraulic cylinder position feedback; Hardware-in-loop simulation experiment was carried on the electro hydraulic servo test bench by mean of the non-linear relation of film thickness and the hydraulic cylinder displacement. Simulation and Hardware-in-loop simulation experiment results show that the controllable journal support exhibit high oil film rigidity can stably and quickly track the expected goal and can be broadly applied in high precision heavy horizontal machine tool.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tomoko Hirayama ◽  
Mitsutaka Ikeda ◽  
Toshiteru Suzuki ◽  
Takashi Matsuoka ◽  
Hiroshi Sawada ◽  
...  

The effects of nanotexturing on oil film thickness and shape under pointcontact elasto-hydrodynamic lubrication (EHL) conditions were experimentally investigated. A disk-onball friction tester with an optical interferometer was used to measure oil film thickness and to observe the oil film shape. Periodic groove structures with a spiral, perpendicular, or parallel shape and with various groove depths and distances were formed by irradiation of a femtosecond laser onto the surface of steel balls. These nanotextured balls were tested under a load of 20 N and at rotational speeds from 1.0 to 3.0 m/s. Most of the balls with nanotexturing had a thicker oil film than those without texturing. The groove depth and angle were the key parameters determining the thickness of the oil film as they controlled the amount of side leakage of oil from the contact point. Optimization of these parameters resulted in an oil film that was almost twice as thick as that on the ball without texturing.


1949 ◽  
Vol 161 (1) ◽  
pp. 73-79 ◽  
Author(s):  
A. Cameron

In this paper the relation of surface roughness of bearing surfaces to allowable film thickness is studied quantitatively with a simple Michell pad apparatus. The pads used were faced with white metal and ran against mild steel collars. The lubricants studied were water, soap solution, paraffin, and light oil. There was little difference in the frictional behaviour of any of the lubricants, except that the aqueous lubricants would not run with very finely finished steel surfaces. The onset of metal to metal contact was detected by an increase in the frictional drag, and also by the change in electrical conductivity between the pad and collar—an extremely sensitive method. The paper shows that there is, at any rate for this system, a quantitative relation between the total surface roughness of the rubbing surfaces and the calculated oil film thickness both at the initial metal to metal contact and seizure. Initial contact occurs when the outlet film thickness, calculated from normal hydrodynamic theory, falls to three times the maximum surface roughness and seizure occurs when it is double the average roughness.


2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
J. Wang ◽  
C. H. Venner ◽  
A. A. Lubrecht

The effect of single-sided and double-sided harmonic surface waviness on the film thickness, pressure, and temperature oscillations in an elastohydrodynamically lubricated eccentric-tappet pair has been investigated in relation to the eccentricity and the waviness wavelength. The results show that, during one working cycle, the waviness causes significant fluctuations of the oil film, pressure, and temperature, as well as a reduction in minimum film thickness. Smaller wavelength causes more dramatic variations in oil film. The fluctuations of the pressure, film thickness, temperature, and traction coefficient caused by double-sided waviness are nearly the same compared with the single-sided waviness, but the variations are less intense.


Sign in / Sign up

Export Citation Format

Share Document