scholarly journals Legitimacy of the Local Thermal Equilibrium Hypothesis in Porous Media: A Comprehensive Review

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8114
Author(s):  
Gazy F. Al-Sumaily ◽  
Amged Al Ezzi ◽  
Hayder A. Dhahad ◽  
Mark C. Thompson ◽  
Talal Yusaf

Local thermal equilibrium (LTE) is a frequently-employed hypothesis when analysing convection heat transfer in porous media. However, investigation of the non-equilibrium phenomenon exhibits that such hypothesis is typically not true for many circumstances such as rapid cooling or heating, and in industrial applications involving immediate transient thermal response, leading to a lack of local thermal equilibrium (LTE). Therefore, for the sake of appropriately conduct the technological process, it has become necessary to examine the validity of the LTE assumption before deciding which energy model should be used. Indeed, the legitimacy of the LTE hypothesis has been widely investigated in different applications and different modes of heat transfer, and many criteria have been developed. This paper summarises the studies that investigated this hypothesis in forced, free, and mixed convection, and presents the appropriate circumstances that can make the LTE hypothesis to be valid. For example, in forced convection, the literature shows that this hypothesis is valid for lower Darcy number, lower Reynolds number, lower Prandtl number, and/or lower solid phase thermal conductivity; however, it becomes invalid for higher effective fluid thermal conductivity and/or lower interstitial heat transfer coefficient.

Author(s):  
Nihad Dukhan

Contemporary porous media that are used in cooling designs include metal and graphite foam. These materials are excellent heat transfer cores due to their large surface area density and the relatively high conductivity of the solid phase. Engineering models for convection heat transfer in such media are needed for thermal system design. When the cooling fluid has a low conductivity, e.g., air, its conduction can be set to zero. Engineering analysis for the fully-developed convection heat transfer inside a confined cylindrical isotropic porous media subjected to constant heat flux is presented. The analysis considers the Darcy flow model and high Pe´clet number. The non-local-thermal equilibrium equations are significantly simplified and solved. The solid and fluid temperatures decay in what looks like an exponential fashion as the distance from the heated wall increases. The effects of the Biot number and the Darcy number are investigated. The results are in qualitative agreement with more complex analytical and numerical results in the literature. The solution is of utility for initial heat transfer designs, and for more complex numerical modeling of the heat transfer phenomenon in porous media.


Author(s):  
Peter Vadasz

Spectacular heat transfer enhancement has been measured in nanofluid suspensions. Attempts in explaining these experimental results did not yield yet a definite answer. Modeling the heat conduction process in nanofluid suspensions is being shown to be a special case of heat conduction in porous media subject to Lack of Local thermal equilibrium (LaLotheq). The topic of heat conduction in porous media subject to Lack of Local thermal equilibrium (LaLotheq) is reviewed, introducing one of the most accurate methods of measuring the thermal conductivity, the transient hot wire method, and discusses its possible application to dual-phase systems. Maxwell’s concept of effective thermal conductivity is then introduced and theoretical results applicable for nanofluid suspensions are compared with published experimental data.


In this chapter, the non-Darcy model is employed for porous media filled with nanofluid. Both natural and forced convection heat transfer can be analyzed with this model. The governing equations in forms of vorticity stream function are derived and then they are solved via control volume-based finite element method (CVFEM). The effect of Darcy number on nanofluid flow and heat transfer is examined.


Author(s):  
Tariq Amin Khan ◽  
Wei Li

Numerical study is performed on the effect of thermal conductivity of porous media (k) on the Nusselt number (Nu) and performance evaluation criteria (PEC) of a tube. Two-dimensional axisymmetric forced laminar and fully developed flow is assumed. Porous medium partially inserted in the core of a tube is investigated under varied Darcy number (Da), i.e., 10−6 ≤ Da ≤ 10−2. The range of Re number used is 100 to 2000 and the conductivity of porous medium is 1.4 to 202.4 W/(m.K) with air as the working fluid. The momentum equations are used to describe the fluid flow in the clear region. The Darcy-Forchheimer-Brinkman model is adopted for the fluid transport in the porous region. The mathematical model for energy transport is based on the one equation model which assumes a local thermal equilibrium between the fluid and the solid phases. Results are different from the conventional thoughts that porous media of higher thermal conductivity can enhance the performance (PEC) of a tube. Due to partial porous media insertion, the upstream parabolic velocity profile is destroyed and the flow is redistributed to create a new fully develop velocity profile downstream. The length of this flow redistribution to a new developed laminar flow depends on the Da number and the hydrodynamic developing length increases with increasing Da number. Moreover, the temperature profile is also readjusted within the tube. The Nu and PEC numbers have a nonlinear trend with varying k. At very low Da number and at a lower k, the Nu number decreases with increasing Re number while at higher k, the Nu number first increases to reach its peak value and then decreases. At higher Re number, the results are independent of k. However, at a higher Da number, the Nu and PEC numbers significantly increases at low Re number while slightly increases at higher Re number. Hence, the change in Nu and PEC numbers neither increases monotonically with k, nor with Re number. Investigation of PEC number shows that at very low Da number (Da = 10−6), inserting porous media of a low k is effective at low Re number (Re ≤ 500) while at high Re number, using porous material is not effective for the overall performance of a tube. However, at a relatively higher Da number (Da = 10−2), high k can be effective at higher Re number. Moreover, it is found that the results are not very sensitive to the inertia term at lower Da number.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Nihad Dukhan

Metal and graphite foam are relatively new types of porous materials characterized by having high-solid phase conductivities. In many cooling applications of these materials, including high-power electronics, low-conductivity fluids flow through them, e.g., air. A simple approximate engineering solution for the convection heat transfer inside a two-dimensional rectangular porous media subjected to constant heat flux on one side is presented. The conduction in the fluid is set to zero, and for simplicity, a plug flow is considered. As a result, the non-local-thermal equilibrium equations are significantly simplified and solved. The solid and fluid temperatures decay in what looks like an exponential fashion as the distance from the heated wall increases. The results are in good agreement with one more complex analytical solution in the literature, in the region far from the heated wall only.


2011 ◽  
Vol 312-315 ◽  
pp. 33-38
Author(s):  
M. Abkar ◽  
P. Forooghi ◽  
A. Abbassi

In this paper, forced convection in a channel lined with a porous layer is investigated. The main goal is to assess the effect of local thermal non-equilibrium condition on overall heat transfer in the channel. The effects of thermal conductivity of solid and thickness of porous layer are also studied. Flow assumed to be laminar and fully developed. The Brinkman-Forchheimer model for flow as well as the two equation energy model is used. The results showed that when the problem tends to local thermal equilibrium condition, heat transfer is enhanced due to heat conduction through solid phase. Another factor, which can facilitate the heat transfer, is the increase of the thermal conductivity of solid material. This trend is sensitive to the thickness of porous layer and modified Biot number, which is a measure (criterion) of local fluid to solid heat transfer. As thickness and modified Biot number increase, the Nusselt number becomes more sensitive to the thermal conductivity ratio.


2020 ◽  
Vol 861 ◽  
pp. 509-513
Author(s):  
Niwat Ketchat ◽  
Bundit Krittacom

Numerical model of the convective-radiative heat transfer of porous media was proposed. A stainless wire-net was used as porous media. The physical properties, consisting of porosity (φ) and optical thickness (τ0), of porous media were independent variables. The air velocity was reported in the form of Reynolds number (Re). Two equations of the conservative energy with local thermal non-equilibrium were analyzed. The gas (θf) and solid (θs) phases of conservative energy equation inside porous media were investigated. The radiative heat flux (ψ) at down-stream of solid phase emitted into outside was dealt by the P1 approximation. From the study, it was found that the level of θf and θs decreased as Re increased because the effect of convection heat transfer. Inversely, the level of ψ increased as increasing Re. The level of θf, θs and ψ were decreased as φ increased owing to a lower volume of material depended on the increasing level of φ resulting to the heat transfer rate became lower. The level of θf, θs and ψ gave increased with τ0 becaues a wider distance in absorping energy leading to a higher emission energy from the porous media was achieved.


2012 ◽  
Vol 605-607 ◽  
pp. 1350-1355
Author(s):  
Xin Wei Lu ◽  
De Zhi Yang ◽  
Wen Jiong Cao ◽  
Zhao Yao Zhou

Convection heat transfer in a plate channel periodically fitted with sintered copper porous ribs attached to a copper plate was numerically studied. The local thermal equilibrium model was adopted in the energy equation to evaluate the temperature of fluid and solid. The effect of porosity, Reynolds number and heat flux applied to the copper plate on the heat transfer characteristic of the porous media was investigated respectively. The numerical results show that the heat transfer can be enhanced by increasing Reynolds number, decreasing the porosity and the heat transfer enhancement of the porous media took effect significantly when subjected to high heat flux. Detailed development of the porous media temperature field and the Nusselt number of the wall as a function of Reynolds number for different porosity and heat flux were also presented.


2017 ◽  
Vol 18 (2) ◽  
pp. 196-211 ◽  
Author(s):  
Mehdi Ahmadi

In this paper, to achievement the effect of increase number of heating components arrangement on the rate of heat transfer of natural convection, that others have been less noticed. Therefore, in each stage increase the number of heating components so much the space occupied by them remains constant. Then by calculating the amount of heat transfer in different Rayleigh number became clear that minify and distributing heating solid phase in the enclosure increases the total Nusselt number and heat transfer, One reason could be high intensity of fluid motion in corners and near walls of the enclosure. In the next section with the solid phases on the enclosure can be made porous media model. As the results showed an increase in average Rayleigh number, Nusselt number has increased. Also be seen in the lower Darcy numbers, speed of increase in Nusselt number with increase in average Rayleigh number is higher. It can be said that in enclosure by any number of solid pieces with certain Darcy number, with an increase in average Rayleigh number, circular flow inside the enclosure becomes more intense and isothermal lines near walls with constant temperature are so dense, that represents an increase in rate of heat transfer. Also by increasing the Darcy number, rate of heat transfer from the porous media has decreased, as regards that a large share of heat transfer in porous media is done by conduction, although increasing Darcy number increases heat transfer of natural convection but decrease a heat transfer of conduction, therefore decrease total of heat transfer.


Author(s):  
Peter Vadasz

Based on the traditional formulation of heat transfer in porous media it is demonstrated that Local Thermal Equilibrium (Lotheq) applies generally for any boundary conditions that are a combination of constant temperature and insulation. The resulting consequences raising an apparent paradox are being analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document