scholarly journals Genesis of Coalbed Methane and Its Storage and Seepage Space in Baode Block, Eastern Ordos Basin

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 81
Author(s):  
Hao Chen ◽  
Wenguang Tian ◽  
Zhenhong Chen ◽  
Qingfeng Zhang ◽  
Shu Tao

The Baode block on the eastern margin of the Ordos Basin is a key area for the development of low-rank coalbed methane (CBM) in China. In order to find out the genesis of CBM and its storage and seepage space in Baode block, the isotopic testing of gas samples was carried out to reveal the origin of CH4 and CO2, as well, mercury intrusion porosimetry, low temperature nitrogen adsorption, and X-ray CT tests were performed to characterize the pores and fractures in No. 4 + 5 and No. 8 + 9 coal seams. The results showed that the average volume fraction of CH4, N2, and CO2 is 88.31%, 4.73%, and 6.36%, respectively. No. 4 + 5 and No. 8 + 9 coal seams both have biogenic gas and thermogenic methane. Meanwhile, No. 4 + 5 and No. 8 + 9 coal seams both contain CO2 generated by coal pyrolysis, which belongs to organic genetic gas, while shallow CO2 is greatly affected by the action of microorganisms and belongs to biogenic gas. The average proportion of micropores, transition pores, mesopores, and macropores is 56.61%, 28.22%, 5.10%, and 10.07%, respectively. Samples collected from No. 4 + 5 coal seams have developed more sorption pores. Meanwhile, samples collected from No. 8 + 9 coal seams exhibited a relatively low degree of hysteresis (Hg retention), suggesting good pore connectivity and relatively high seepage ability, which is conducive to gas migration. The connected porosity of coal samples varies greatly, mainly depending on the relative mineral content and the proportion of connected pores.

2021 ◽  
Vol 9 ◽  
Author(s):  
Hongli Wang ◽  
Xiao Zhang ◽  
Suian Zhang ◽  
Hongxing Huang ◽  
Jun Wang

The Baiyanghe block in Fukang, Xinjiang, China, is rich in coalbed methane (CBM) resources, and several pilot experimental wells have yielded high production. Due to the high dip angle (35–55°) of the coal seam in this area, the lack of understanding of the geological characteristics, the physical properties of coal, and gas–water migration law lead to immature development techniques and poor overall development benefits. We first conducted desorption and adsorption tests on low-rank coal of this area and found residual gas in the coal. We established a coalbed methane desorption model suitable for this area by modifying the isotherm adsorption model. Next, by analyzing the influence of the gas–water gravity differentiation in the high–dip angle coal seam and the shallow fired coalbed methane characteristics in this area, we discovered the leakage of CBM from the shallow exposed area of the coal seam. Given the particular physical property of coal and gas–water migration characteristics in this area, we optimized the well pattern: (i) the U-shaped along-dip horizontal well group in coal seams is the main production well for gas production with a spacing distance of 312 m; (ii) a multistage fracturing well drilled in the floor of coal is for water production; and (iii) vertical wells with a spacing distance of 156 m in the shallow area is to capture CBM leakage. Using numerical simulation and net present value (NPV) economics models, we optimized the well pattern details. Applying our CBM desorption model, the numerical simulator can improve the accuracy of the low-rank coalbed methane productivity forecast. The optimization results demonstrated the following: 1) the cumulative gas production of single U-shaped well increased by 89% with the optimal well spacing, 2) the cumulative gas production of the well group increased by 87.54% after adding the floor staged horizontal well, and 3) the amount of CBM leakage decrease by 67.59%.


Author(s):  
Jianjun Wang ◽  
Lingli Liu ◽  
Zehong Cui ◽  
Hongjun Wang ◽  
Teng Li ◽  
...  

AbstractThe low-temperature nitrogen adsorption measurement is commonly used to describe the pore structure of porous medium, while the role of degassing temperature in the low-temperature nitrogen adsorption measurement does not attract enough attention, various degassing temperatures may lead to the different pore structure characterization for the same coal. In this study, the low-rank coal collected from Binchang mining area, southwest of Ordos Basin was launched the low-temperature nitrogen adsorption measurement under seven various degassing temperatures (120 °C, 150 °C, 180 °C, 210 °C, 240 °C, 270 °C and 300 °C), respectively, the dynamic change of the pore structure under refined upgrading degassing temperatures are studied, and it was also quantitative evaluated with the multi-fractal theory. The results show that the pore specific surface area and pore volume decrease linearly with the increased degassing temperatures, ranges from 12.53 to 2.16 m2/g and 0.01539 to 0.00535 cm3/g, respectively. While the average pore aperture features the contrary characteristics (various from 4.9151 to 9.9159 nm), indicating the pore structure has been changed during the refined upgrading degassing temperatures. With the upgrading degassing temperatures, the sizes of hysteresis loop decrease, and the connectivity of pore structure enhanced. The multi-fractal dimension and multi-fractal spectrum could better present the partial abnormal of pore structure during the refined upgrading degassing temperatures, and the quality index, Dq spectrum, D−10–D10 and multi-fractal spectrum could describe the homogeneity and connectivity of the pores finely. The degassing temperatures of 150 °C, 180 °C and 270 °C are selected as three knee points, which can reflect the partial abnormal of the pore structure during the refined upgrading degassing temperatures. Under the lower degassing temperature (< 150 °C), the homogeneity and connectivity of the pore feature a certain increase, following that it presents stable when the degassing temperatures various from 150 to 180 °C. The homogeneity and connectivity of the pore would further enhanced until the degassing temperature reaches to 270 °C. Because of the melting of the pore when the degassing temperature exceeds 270 °C, the complexity of pore structure increased. In this study, we advise the degassing temperature for low-temperature nitrogen adsorption measurement of low-rank coal should not exceed 120 °C.


2021 ◽  
Vol 21 (1) ◽  
pp. 43-56
Author(s):  
Xiang-Dong Gao ◽  
Yan-Bin Wang ◽  
Xiang Wu ◽  
Yong Li ◽  
Xiao-Ming Ni ◽  
...  

The high gas content of deep coal seams is a driving force for the exploration and development of deep coalbed methane (CBM). The nanoscale pores, which are the main spaces for adsorption and storage of CBM, are closely related to the burial depth. Based on integrated approaches of vitrinite reflectance (Ro), maceral composition, scanning electron microscope (SEM), proximate analysis, fluid inclusion test, low-temperature N2 adsorption–desorption, and CH4 isothermal adsorption, the nanoscale pore structure of coals recovered at depths from 650 to 2078 m was determined, and its influence on the CH4 adsorption capacity was discussed. The results show that the coal rank has a good linear relationship with the current burial depth of the coal seams; that is, the influences of the burial depth on the coals can be reflected by the influences of the coal rank on the coals. With the increase in the coal rank, the moisture and volatile content decrease, and the fixed carbon content increases. The variation in the pore volume and specific surface area with the increase in the coal rank can be divided into two stages: the rapid decline stage (when 0.75%<Ro < 1.0%), dominated by the compaction and gelatinization, and the slow decline stage (when 1.0%<Ro < 1.35%), characterized by the low stress sensitivity and the mass production of secondary pores. The percentage of micropores increases throughout the process. When 10 nm is taken as the boundary, the nanoscale pores show different fractal features. When Ro < 1.0%, the fractal dimension (FD) of the micropores is close to 3. When Ro > 1.0%, the FD of the micropores is close to 2. This indicates that with the increase in the degree of coalification, the surface of the micropores is simpler. The above results show that the gas adsorption capacity of coal first slightly decreases (when 0.75% < Ro < 1.0%) and then increases (when 1.0% < Ro < 1.35%), and the coincident results are shown in the Langmuir volume (VL) test results.


2018 ◽  
Vol 37 (1) ◽  
pp. 102-124 ◽  
Author(s):  
Yanfei Liu ◽  
Dazhen Tang ◽  
Song Li ◽  
Hao Xu ◽  
Shu Tao ◽  
...  

The Hancheng block in the southeastern Ordos Basin is one of the earliest and the most important areas for coalbed methane exploration and development in China. However, there are significant production variations in different wells or even some adjacent wells in the Hancheng block. To reveal the reasons of production differences in such a small scale, further detailed studies of coalbed methane productivity in the Hancheng pilot test area, a precursor trial area in Hancheng block with mature, well-characterized coalbed methane reservoirs and long-term production database, were conducted. The influence of nine factors (including engineering and geological factors) on gas production was analyzed. By introducing the rough set theory, which is applicable to the vague, imprecise, and incomplete information system, this paper presents a method for quantitative evaluation of the influencing factors on gas production. The results indicate that there are certain distribution characteristics of productivity in Hancheng pilot test area, which can be partitioned into four zones. The degressive order of the influencing degree of these nine factors is (i) the distance between the well and the fault, (ii) the structure curvature of the coal seams, (iii) the gas content, (iv) the critical reservoir ratio, (v) the volume of the fracturing liquids per meter, (vi) the volume of the fracturing sand per meter, (vii) the dynamic liquid level drop rate, (viii) the depth, and (ix) the thickness. Geological factors, especially the influence of fault, structural curvature of the coal seams and gas content, play a major role in controlling long-term gas production. Engineering factors (effect of fracturing and dynamic liquid level drop rate) have always been integral parts of coalbed methane development.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jielin Lu ◽  
Xuehai Fu ◽  
Junqiang Kang ◽  
Ming Cheng ◽  
Zhenzhi Wang

The accurate characterization of coal pore structure is significant for coalbed methane (CBM) development. The splicing of practical pore ranges of multiple test methods can reflect pore structure characteristics. The pore\fracture compressibility is the main parameter affecting the porosity and permeability of coal reservoirs. The difference in compressibility of different coal rank reservoirs and pore\fracture structures with changing stress have not been systematically found. The pore structure characteristics of different rank coal samples were characterized using the optimal pore ranges of high-pressure mercury intrusion (HPMI), low-temperature liquid nitrogen adsorption (LT-N2A), low-pressure carbon dioxide adsorption (LP-CDA), and nuclear magnetic resonance (NMR) based on six groups of different rank coal samples. The compressibility of coal matrix and pore\fracture were studied using HPMI data and NMR T2 spectrum under effective stress. The results show that the more accurate full pore characterization results can be obtained by selecting the optimal pore range measured by HPMI, LT-N2A, and LP-CDA and comparing it with the NMR pore results. The matrix compressibility of different rank coal samples shows that low-rank coal &gt; high-rank coal &gt; medium-rank coal. When the effective stress is less than 6 MPa, the microfractures are compressed rapidly, and the compressibility decreases slowly when the effective stress is more than 6 MPa. Thus, the compressibility of the adsorption pore is weak. Nevertheless, the adsorption pore has the most significant compression space because of the largest proportion in different pore structures. The variation trend of matrix compressibility and pore\fracture compressibility is consistent with the increase of coal rank. The compressibility decreases with the rise of reservoir heterogeneity and mechanical strength. The development of pore volume promotes compressibility. The research results have guiding significance for the exploration and development of CBM in different coal rank reservoirs.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Fu Yang ◽  
Dongmin Ma ◽  
Zhonghui Duan ◽  
Dazhong Ren ◽  
Tao Tian ◽  
...  

During reservoir evaluation, the microscopic pore structure of low-rank coal is mainly characterized in order to study the coalbed methane diffuse and migration mechanisms and control. The low-rank coals are very different in pore type and size, so it is necessary to use various techniques to describe their pore structure. For vitrain and durain of the Coal Member of the Yan’an Formation from Huanglong Coalfield, their chemical composition and microscopic pore structure characteristics were studied, and the factors of influencing the pore size distribution (PSD) were explored. Obviously, vitrain and durain are different in chemical composition. Vitrain has higher moisture content, volatile yield, and vitrinite group content than durain. Vitrain and durain mainly contain vitrinite and inertinite, respectively. The pore structure characteristics (e.g., pore types and PSD) of vitrain and durain were systematically by mercury intrusion porosimetry (MIP), low-temperature nitrogen adsorption, and carbon dioxide (CO2) adsorption. The vitrain and durain samples with a micropore size of <2 nm were mainly tested on their specific surface area (SSA) and pore volume (PV). The results show that microporous vitrain has larger SSA and PV than microporous durain, while mesoporous and macroporous vitrain has smaller SSA and PV than mesoporous and macroporous durain. SSA is very positively correlated with PV. The ash content is negatively correlated with SSA and PV. The ash content influences microporous vitrain more greatly than microporous durain, but mesoporous and macroporous durain more greatly than mesoporous and macroporous vitrain. SSA is positively correlated with the vitrinite content of durain and negatively correlated with the inertinite and exinite contents of durain. However, SSA is negatively correlated with the vitrinite and exinite contents of vitrain and positively correlated with the inertinite content of vitrain. Vitrain has higher methane adsorption capacity, desorption rate, and recovery ratio than durain. There are parameters that are obviously affected by the micropore characteristics.


2014 ◽  
Vol 59 (2) ◽  
pp. 509-516
Author(s):  
Andrzej Olajossy

Abstract Methane sorption capacity is of significance in the issues of coalbed methane (CBM) and depends on various parameters, including mainly, on rank of coal and the maceral content in coals. However, in some of the World coals basins the influences of those parameters on methane sorption capacity is various and sometimes complicated. Usually the rank of coal is expressed by its vitrinite reflectance Ro. Moreover, in coals for which there is a high correlation between vitrinite reflectance and volatile matter Vdaf the rank of coal may also be represented by Vdaf. The influence of the rank of coal on methane sorption capacity for Polish coals is not well understood, hence the examination in the presented paper was undertaken. For the purpose of analysis there were chosen fourteen samples of hard coal originating from the Upper Silesian Basin and Lower Silesian Basin. The scope of the sorption capacity is: 15-42 cm3/g and the scope of vitrinite reflectance: 0,6-2,2%. Majority of those coals were of low rank, high volatile matter (HV), some were of middle rank, middle volatile matter (MV) and among them there was a small number of high rank, low volatile matter (LV) coals. The analysis was conducted on the basis of available from the literature results of research of petrographic composition and methane sorption isotherms. Some of those samples were in the form (shape) of grains and others - as cut out plates of coal. The high pressure isotherms previously obtained in the cited studies were analyzed here for the purpose of establishing their sorption capacity on the basis of Langmuire equation. As a result of this paper, it turned out that for low rank, HV coals the Langmuire volume VL slightly decreases with the increase of rank, reaching its minimum for the middle rank (MV) coal and then increases with the rise of the rank (LV). From the graphic illustrations presented with respect to this relation follows the similarity to the Indian coals and partially to the Australian coals.


Sign in / Sign up

Export Citation Format

Share Document