scholarly journals A Review of the Optimization Design and Control for Ocean Wave Power Generation Systems

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 102
Author(s):  
Juanjuan Wang ◽  
Zhongxian Chen ◽  
Fei Zhang

Ocean wave power generation techniques (converting wave energy into electrical energy) have been in use for many years. The objective of this paper is to review the design, control, efficiency, and safety of ocean wave power generation systems. Several topics are discussed: the current situation of ocean wave power generation system tests in real ocean waves; the optimization design of linear generator for converting ocean wave energy into electrical energy; some optimization control methods to improve the operational efficiency of ocean wave power generation systems; and the current policy and financial support of ocean wave power generation in some countries. Due to the harsh ocean environment, safety is another factor that ocean wave power generation systems will face. Therefore, before the conclusion of this review, a damping coefficient optimization control method based on the domain partition is proposed to improve the efficiency and safety of ocean wave power generation systems.

2013 ◽  
Vol 724-725 ◽  
pp. 818-822
Author(s):  
Sheng Ye ◽  
Wei Jun Wang ◽  
Bing Li ◽  
Long Bo Mao

As a source of a clean green renewable new energy, wave power generation is paid much attention by more countries while the decrease of the amount of the energy day by day. The conversion technology in the field of wave energy has tended to mature. Now it is running into commercial exploitation leve1. In this paper, the fundamental principles of ocean wave energy generation technology are presented. The classification and present situation of ocean wave power generation device are introduced. At last, some possible directions and prospects of wave energy generation technology are expatiated.


2013 ◽  
Author(s):  
H. Murakami ◽  
O. Rios

Global attempts to increase generation of clean and reproducible energy have contributed to considerable progress in ocean-wave power-generation technologies. The efficiency of ocean-wave energy converters has improved by almost an order of magnitude in the last decade. In this report, we consider a floating-type gyroscopic ocean-wave power-generator that has proven to generate 50 kW in a prototype test conducted by a Japanese company in 2012. A gyroscopic power generator consists of a buoy, a gimbal, and spinning rotors mounted on a gimbal. The gimbal is installed on the deck of the buoy and rotates when the buoy oscillates or rocks by ocean waves. The gimbal axis is connected to an electric generator. The objectives of our research are to understand quantitatively the mechanisms of gyroscopic ocean-wave power-generators and to improve the component design of the generator to maximize power output. To this end, we develop a mathematical model and a scale model of a gyroscopic ocean-wave power-generator. This integrated approach is to numerically simulate power generation and to clarify the effect of relevant design parameters.


2021 ◽  
Vol 252 ◽  
pp. 02079
Author(s):  
Hu Chen ◽  
Zhifei Ji ◽  
sheng Hu ◽  
Min Lin

This paper proposed a pulley-buoy accelerated type linear wave power generation system, and verifies its feasibility and effectiveness through experiments. Compared with traditional three-phase wave energy converter, the process of energy transfer was cancelled in the pulley-buoy accelerated type linear wave power generation system, wave energy was converted into electrical energy through the movement of float directly. In the system, the pulley assembly increased the velocity of the float and the generating capacity of the linear generation system, thereby increasing its conversion efficiency. In the experiment, an undersized pulley-buoy accelerated type linear wave power generation system and a swing wave-making system were built in the laboratory. The experiment explored the influence of the number of the stator coil on the power generation performance of the system, and results showed that within the scope of this research, increasing the stator coils to a certain extent could effectively raise the efficiency of wave energy conversion and improve the generation performance of the pulley-buoy accelerated type linear wave power generation system. This research provides valuable experience for the actual application and effective operation of wave energy conversion system.


2014 ◽  
Vol 48 (4) ◽  
pp. 51-60 ◽  
Author(s):  
Carlos Velez ◽  
Zhihua Qu ◽  
Kuo-Chi Lin ◽  
Shiyuan Jin

Abstract Ocean waves provide an abundant, clean, and renewable source of energy. Existing systems, typically hydraulic turbines powered by high-pressure fluids, are very large in size and costly. Additionally, they require large ocean waves in which to operate. This paper details the design, development, and laboratory prototype testing of a wave power generation system comprising a buoy that houses a set of mechanical devices and a permanent magnetic generator. The buoy, floating on the surface of the ocean, utilizes the vertical movement of ocean waves to pull on a chain anchored to the ocean floor. The linear motion is translated into rotation, which rotates a shaft to move armature coils within the generator to produce an electric current. The amount of energy generated increases with wave height and input frequency. The flywheel inertia, shaft rotation speed, and electrical load are optimized to provide maximize electricity production. The paper addresses the design, analysis, and implementation of mechanical and electrical systems, together with resistive load control, system optimization, and performance analysis. Both simulation and experimental results are provided and compared.


2018 ◽  
Vol 8 (9) ◽  
pp. 1700 ◽  
Author(s):  
Yan Chen ◽  
Min Cao ◽  
Chunyan Ma ◽  
Zhigang Feng

As a clean and renewable energy source, wave energy is of great significance in solving primary energy shortages and environmental pollution. Direct-drive wave power systems consisting of linear generators have attracted the attention of researchers from various countries. Linear Switched Reluctance Generator has the advantages of simple structure, sturdiness, reliable operation, suitable for harsh environments, and easy maintenance, aiming at the problem of single-sided magnetic pull force and serious coupling of phase winding of traditional linear switched reluctance generator, a Double-sided Linear Switched Reluctance Generator (DLSRG) for wave power generation is designed, and its electromagnetic characteristics (including coupling characteristics, magnetic saturation characteristics, and magnetic tension characteristics) are analyzed to verify the rationality of the structure and parameter selection. Finally, the power generation performance is studied. The joint simulation results show that the structure design of DLSRG is reasonable, overcomes the problem of single-sided magnetic pull force, the phase-to-phase coupling is negligible, and it has continuous power generation capability, and the power generation efficiency is as high as 80.6%. Therefore, DLSRG designed in this paper is suitable for wave power generation.


2021 ◽  
pp. 1-10
Author(s):  
Francisco Arias ◽  
Salvador De Las Heras

Abstract The possibility to convert the ocean wave energy into electrical energy by piezoelectric layers has excited the imagination of ocean wave energy conversion designers for decades owing to its relative robustness (no mechanical parts are needed), the capability to cover large areas and its relative low cost. Unfortunately, the very poor efficiency featured by piezoelectric layers in application of ocean waves has prevented its application even as energy harvester. Here, the possibility to induce hydrocavitation and then working with more higher local pressures for substantial efficiency enhancement is discussed. Utilizing a simplified geometrical and physical model and the linear and potential theory, a first theoretical estimation for the energy enhancement driven by hydrocavitation was calculated. It was found that the power could be enhanced several orders of magnitude which, although still rather low, however, the enhanced electric outputs can be used now as energy harvesters. Additional R&D is encouraged in order to explore the possibilities to harness hydrocavitation to enhance piezoelectric converters.


2012 ◽  
Vol 512-515 ◽  
pp. 905-909
Author(s):  
Cui Ping Kuang ◽  
Peng Chen Liu ◽  
Yi Pan ◽  
Jie Gu

With the increasing demand of energy, as a clean green renewable energy, ocean wave energy is paid much attention by the countries especially those along coasts. So far, wave power generation technology has experienced decades of development. In this paper, the development and the main wave power generation devices are introduced, moreover, the latest applications of wave energy and existing problems on wave power generation technology are presented.


2020 ◽  
Vol 165 ◽  
pp. 01021
Author(s):  
Yang Yuxin ◽  
Jin Zhemin

With the increasingly serious environmental pollution and the intensified energy war, the all-round development and utilization of marine energy will become an indispensable key link in China’s implementation of the maritime power strategy. In recent years, with the support of the state, China’s wave energy generation technology has made a key breakthrough.In order to protect the environment, save energy and reduce emissions, and promote the utilization of wave energy, this paper reviews the development history of application generation technology, summarizes its development from two aspects of optimization and application of wave energy conversion devices, and analyses the application examples of wave energy generation devices on ships. This paper summarizes the application trend of wave power generation devices on ships: wave power generation should be used as auxiliary and domestic electricity for ships and wave energy should be combined with other new energy sources. Wave energy application in marine power generation can effectively reduce emissions from ships, which is conducive to the sustainable development of human society.


2014 ◽  
Vol 1030-1032 ◽  
pp. 472-475
Author(s):  
Shi Ming Wang ◽  
Yao Li ◽  
Hao Zhan ◽  
Ka Tian

In recent years, the concept of renewable energy has been deepening and popularization, all kinds of new energy technology is developed by leaps and bounds, a growing number of wave energy devices has been put into use and has a very good prospect. In wave power generation equipment, the conversion transmission device is a very important unit, which involving energy transfer, adjustment, stable output and buffer storage, so it need to be well designed to satisfy the operational requirement by taking advantage of different parts. By analyzing the commonly used conversion transmission devices, the characteristics of transmission devices and wave power generation equipments, we proposing a design of a flexible transmission device which can change its torque capacity with clutch automatic control device, in the form of its layout to drive a train of thought for the design wave energy conversion.


Sign in / Sign up

Export Citation Format

Share Document