scholarly journals An IoT-Based Services Infrastructure for Utility-Scale Distributed Solar Farms

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 440
Author(s):  
Salsabeel Shapsough ◽  
Imran Zualkernan

Internet of Things (IoT) provides large-scale solutions for efficient resource monitoring and management. As such, the technology has been heavily integrated into domains such as manufacturing, healthcare, agriculture, and utilities, which led to the emergence of sustainable smart cities. The success of smart cities depends on the availability of data, as well as the quality of the data management infrastructure. IoT introduced numerous new software, hardware, and networking technologies designed for efficient and low-cost data transport, storage, and processing. However, proper selection and integration of the correct technologies is crucial to ensuring a positive return on investment for such systems. This paper presents a novel end-to-end infrastructure for solar energy analysis and prediction via edge-based analytics.

Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 195
Author(s):  
Davide Andrea Guastella ◽  
Guilhem Marcillaud ◽  
Cesare Valenti

Smart cities leverage large amounts of data acquired in the urban environment in the context of decision support tools. These tools enable monitoring the environment to improve the quality of services offered to citizens. The increasing diffusion of personal Internet of things devices capable of sensing the physical environment allows for low-cost solutions to acquire a large amount of information within the urban environment. On the one hand, the use of mobile and intermittent sensors implies new scenarios of large-scale data analysis; on the other hand, it involves different challenges such as intermittent sensors and integrity of acquired data. To this effect, edge computing emerges as a methodology to distribute computation among different IoT devices to analyze data locally. We present here a new methodology for imputing environmental information during the acquisition step, due to missing or otherwise out of order sensors, by distributing the computation among a variety of fixed and mobile devices. Numerous experiments have been carried out on real data to confirm the validity of the proposed method.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 104 ◽  
Author(s):  
Fátima Castro-Jul ◽  
Rebeca Díaz-Redondo ◽  
Ana Fernández-Vilas ◽  
Sophie Chabridon ◽  
Denis Conan

Since smart cities aim at becoming self-monitoring and self-response systems, their deployment relies on close resource monitoring through large-scale urban sensing. The subsequent gathering of massive amounts of data makes essential the development of event-filtering mechanisms that enable the selection of what is relevant and trustworthy. Due to the rise of mobile event producers, location information has become a valuable filtering criterion, as it not only offers extra information on the described event, but also enhances trust in the producer. Implementing mechanisms that validate the quality of location information becomes then imperative. The lack of such strategies in cloud architectures compels the adoption of new communication schemes for Internet of Things (IoT)-based urban services. To serve the demand for location verification in urban event-based systems (DEBS), we have designed three different fog architectures that combine proximity and cloud communication. We have used network simulations with realistic urban traces to prove that the three of them can correctly identify between 73% and 100% of false location claims.


Author(s):  
Fátima Castro-Jul ◽  
Rebeca P. Díaz-Redondo ◽  
Ana Fernández-Vilas ◽  
Sophie Chabridon ◽  
Denis Conan

Since smart cities aim at becoming self-monitoring and self-response systems, their deployment relies on close resource monitoring through large-scale urban sensing. The subsequent gathering of massive amounts of data makes essential the development of event filtering mechanisms that enable the selection of what is relevant and trustworthy. Due to the rise of mobile event producers, location information has become a valuable filtering criterion as it not only offers extra information on the event described but also enhances trust on the producer. Implementing mechanisms that validate the quality of location information becomes then imperative. The lack of such strategies in cloud architectures compels the adoption of new communication schemes for IoT-based urban services. To serve the demand for location verification in urban event-based systems (DEBS), we have designed three different fog architectures that combine proximity and cloud communication. Moreover, we have successfully assessed their performance using network simulations with realistic urban traces.


2019 ◽  
Vol 8 (3) ◽  
pp. 133 ◽  
Author(s):  
Vaidehi Daptardar ◽  
Manasi Gore

The concept of Sustainable development underlines the long lasting development of an economy by an efficient resource use fulfilling the economic, social and environmental aspects together. The SDGs by the UNDP focus  on 17 goals for all countries to end poverty, protect the planet and ensure that all people enjoy peace and prosperity.The mission of Smart Cities in India is to promote cities that provide core infrastructure and give a decent quality of life to its citizens, a clean and sustainable environment and application of ‘Smart’ Solutions. The focus is on sustainable and inclusive development of the Mega cities, an indispensable outcome of the development process and urbanization implied in it. During the course of economic development over last 70 years in India, many cities have emerged as unsustainable and highly vulnerable to manmade calamities.This paper would elaborate on the details of Smart city project in India in the light of Sustainable development. The Smart cities mission though aims at sustainable development, this path is full of challenges along with some opportunities in disguise. The paper would suggest some policy implications such as developing smart villages along with these smart cities to bridge the gap between the rural and urban India.   Keywords: Smart city mission, Sustainable development, Smart villages, Sustainable Development Goals (SDGs)


2020 ◽  
Author(s):  
Fábio Rodrigues de la Rocha

Public street lighting management is a well known problemwhich can be revisited from the perspective of Smart Cities.In Smart Cities there is an interconnection of services andinfrastructure to provide sustainable growth and improvementsin citizens’ quality of life. In this research work, weexplore new low cost technologies to create a smart streetlight system capable of monitoring and controlling the lamps,thus reducing the costs with maintenance and allowing amore rational use of electricity.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4273
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

The growth of the Internet of Things (IoT) led to the deployment of many applications that use wireless networks, like smart cities and smart agriculture. Low Power Wide Area Networks (LPWANs) meet many requirements of IoT, such as energy efficiency, low cost, large coverage area, and large-scale deployment. Long Range Wide Area Network (LoRaWAN) networks are one of the most studied and implemented LPWAN technologies, due to the facility to build private networks with an open standard. Typical LoRaWAN networks are single-hop in a star topology, composed of end-devices that transmit data directly to gateways. Recently, several studies proposed multihop LoRaWAN networks, thus forming wireless mesh networks. This article provides a review of the state-of-the-art multihop proposals for LoRaWAN. In addition, we carried out a comparative analysis and classification, considering technical characteristics, intermediate devices function, and network topologies. This paper also discusses open issues and future directions to realize the full potential of multihop networking. We hope to encourage other researchers to work on improving the performance of LoRaWAN mesh networks, with more theoretical and simulation analysis, as well as practical deployments.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 192 ◽  
Author(s):  
Timothy Puckering ◽  
Jake Thompson ◽  
Sushruth Sathyamurthy ◽  
Sinduja Sukumar ◽  
Tirosh Shapira ◽  
...  

There has been a recent surge of interest in computer-aided rapid data acquisition to increase the potential throughput and reduce the labour costs of large scale Caenorhabditis elegans studies. We present Automated WormScan, a low-cost, high-throughput automated system using commercial photo scanners, which is extremely easy to implement and use, capable of scoring tens of thousands of organisms per hour with minimal operator input, and is scalable. The method does not rely on software training for image recognition, but uses the generation of difference images from sequential scans to identify moving objects. This approach results in robust identification of worms with little computational demand. We demonstrate the utility of the system by conducting toxicity, growth and fecundity assays, which demonstrate the consistency of our automated system, the quality of the data relative to manual scoring methods and congruity with previously published results.


2021 ◽  
Vol 11 (22) ◽  
pp. 10793
Author(s):  
Azin Moradbeikie ◽  
Ahmad Keshavarz ◽  
Habib Rostami ◽  
Sara Paiva ◽  
Sérgio Ivan Lopes

Large-scale deployments of the Internet of Things (IoT) are adopted for performance improvement and cost reduction in several application domains. The four main IoT application domains covered throughout this article are smart cities, smart transportation, smart healthcare, and smart manufacturing. To increase IoT applicability, data generated by the IoT devices need to be time-stamped and spatially contextualized. LPWANs have become an attractive solution for outdoor localization and received significant attention from the research community due to low-power, low-cost, and long-range communication. In addition, its signals can be used for communication and localization simultaneously. There are different proposed localization methods to obtain the IoT relative location. Each category of these proposed methods has pros and cons that make them useful for specific IoT systems. Nevertheless, there are some limitations in proposed localization methods that need to be eliminated to meet the IoT ecosystem needs completely. This has motivated this work and provided the following contributions: (1) definition of the main requirements and limitations of outdoor localization techniques for the IoT ecosystem, (2) description of the most relevant GNSS-free outdoor localization methods with a focus on LPWAN technologies, (3) survey the most relevant methods used within the IoT ecosystem for improving GNSS-free localization accuracy, and (4) discussion covering the open challenges and future directions within the field. Some of the important open issues that have different requirements in different IoT systems include energy consumption, security and privacy, accuracy, and scalability. This paper provides an overview of research works that have been published between 2018 to July 2021 and made available through the Google Scholar database.


Author(s):  
Nilamadhab Mishra

The progressive data science and knowledge analytic tasks are gaining popularity across various intellectual applications. The main research challenge is to obtain insight from large-scale IoE data that can be used to produce cognitive actuations for the applications. The time to insight is very slow, quality of insight is poor, and cost of insight is high; on the other hand, the intellectual applications require low cost, high quality, and real-time frameworks and algorithms to massively transform their data into cognitive values. In this chapter, the author would like to discuss the overall data science and knowledge analytic contexts on IoE data that are generated from smart edge computing devices. In an IoE-driven e-BI application, the e-consumers are using the smart edge computing devices from which a huge volume of IoE data are generated, and this creates research challenges to traditional data science and knowledge analytic mechanisms. The consumer-end IoE data are considered the potential sources to massively turn into the e-business goldmines.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3349
Author(s):  
Antonio Puliafito ◽  
Giuseppe Tricomi ◽  
Anastasios Zafeiropoulos ◽  
Symeon Papavassiliou

A smart city represents an improvement of today’s cities, both functionally and structurally, that strategically utilizes several smart factors, capitalizing on Information and Communications Technology (ICT) to increase the city’s sustainable growth and strengthen the city’s functions, while ensuring the citizens’ enhanced quality of life and health. Cities can be viewed as a microcosm of interconnected “objects” with which citizens interact daily, which represents an extremely interesting example of a cyber physical system (CPS), where the continuous monitoring of a city’s status occurs through sensors and processors applied within the real-world infrastructure. Each object in a city can be both the collector and distributor of information regarding mobility, energy consumption, air pollution as well as potentially offering cultural and tourist information. As a consequence, the cyber and real worlds are strongly linked and interdependent in a smart city. New services can be deployed when needed, and evaluation mechanisms can be set up to assess the health and success of a smart city. In particular, the objectives of creating ICT-enabled smart city environments target (but are not limited to) improved city services; optimized decision-making; the creation of smart urban infrastructures; the orchestration of cyber and physical resources; addressing challenging urban issues, such as environmental pollution, transportation management, energy usage and public health; the optimization of the use and benefits of next generation (5G and beyond) communication; the capitalization of social networks and their analysis; support for tactile internet applications; and the inspiration of urban citizens to improve their quality of life. However, the large scale deployment of cyber-physical-social systems faces a series of challenges and issues (e.g., energy efficiency requirements, architecture, protocol stack design, implementation, and security), which requires more smart sensing and computing methods as well as advanced networking and communications technologies to provide more pervasive cyber-physical-social services. In this paper, we discuss the challenges, the state-of-the-art, and the solutions to a set of currently unresolved key questions related to CPSs and smart cities.


Sign in / Sign up

Export Citation Format

Share Document