scholarly journals Machine Learning in Healthcare Communication

Encyclopedia ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 220-239
Author(s):  
Sarkar Siddique ◽  
James C. L. Chow

Machine learning (ML) is a study of computer algorithms for automation through experience. ML is a subset of artificial intelligence (AI) that develops computer systems, which are able to perform tasks generally having need of human intelligence. While healthcare communication is important in order to tactfully translate and disseminate information to support and educate patients and public, ML is proven applicable in healthcare with the ability for complex dialogue management and conversational flexibility. In this topical review, we will highlight how the application of ML/AI in healthcare communication is able to benefit humans. This includes chatbots for the COVID-19 health education, cancer therapy, and medical imaging.

2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


Author(s):  
Joel Weijia Lai ◽  
Candice Ke En Ang ◽  
U. Rajendra Acharya ◽  
Kang Hao Cheong

Artificial Intelligence in healthcare employs machine learning algorithms to emulate human cognition in the analysis of complicated or large sets of data. Specifically, artificial intelligence taps on the ability of computer algorithms and software with allowable thresholds to make deterministic approximate conclusions. In comparison to traditional technologies in healthcare, artificial intelligence enhances the process of data analysis without the need for human input, producing nearly equally reliable, well defined output. Schizophrenia is a chronic mental health condition that affects millions worldwide, with impairment in thinking and behaviour that may be significantly disabling to daily living. Multiple artificial intelligence and machine learning algorithms have been utilized to analyze the different components of schizophrenia, such as in prediction of disease, and assessment of current prevention methods. These are carried out in hope of assisting with diagnosis and provision of viable options for individuals affected. In this paper, we review the progress of the use of artificial intelligence in schizophrenia.


2022 ◽  
pp. 67-88
Author(s):  
Dhanabalan Thangam ◽  
Anil B. Malali ◽  
Gopalakrishanan Subramaniyan ◽  
Sudha Mariappan ◽  
Sumathy Mohan ◽  
...  

Artificial intelligence (AI) and machine learning (ML) are playing a major role in addressing and understanding better the COVID-19 crisis in recent days. These technologies are simulating human intelligence into the machines and consume large amounts of data for identifying and understanding the patterns and insights quickly than a human and preparing us with new kinds of technologies for preventing and fighting with COVID-19 and other pandemics. It helps a lot to notice the people who got infected by the virus and to forecast the infection rate in the upcoming days with the earlier data. Healthcare and medical sectors are in requirement of advanced technologies for taking accurate decision to manage this virus spread. AI-enabled technologies are working in a talented way to do things intelligently like human intelligence. Thus, the AI-enabled technologies are employed for attaining accurate health results by examining, forecasting, and checking present infected and possibly future cases.


Author(s):  
Lorenzo Barberis Canonico ◽  
Christopher Flathmann ◽  
Nathan McNeese

There is an ever-growing literature on the power of prediction markets to harness “the wisdom of the crowd” from large groups of people. However, traditional prediction markets are not designed in a human-centered way, often restricting their own potential. This creates the opportunity to implement a cognitive science perspective on how to enhance the collective intelligence of the participants. Thus, we propose a new model for prediction markets that integrates human factors, cognitive science, game theory and machine learning to maximize collective intelligence. We do this by first identifying the connections between prediction markets and collective intelligence, to then use human factors techniques to analyze our design, culminating in the practical ways with which our design enables artificial intelligence to complement human intelligence.


2020 ◽  
pp. 1-14
Author(s):  
Zhen Huang ◽  
Qiang Li ◽  
Ju Lu ◽  
Junlin Feng ◽  
Jiajia Hu ◽  
...  

<b><i>Background:</i></b> Application and development of the artificial intelligence technology have generated a profound impact in the field of medical imaging. It helps medical personnel to make an early and more accurate diagnosis. Recently, the deep convolution neural network is emerging as a principal machine learning method in computer vision and has received significant attention in medical imaging. <b><i>Key Message:</i></b> In this paper, we will review recent advances in artificial intelligence, machine learning, and deep convolution neural network, focusing on their applications in medical image processing. To illustrate with a concrete example, we discuss in detail the architecture of a convolution neural network through visualization to help understand its internal working mechanism. <b><i>Summary:</i></b> This review discusses several open questions, current trends, and critical challenges faced by medical image processing and artificial intelligence technology.


2018 ◽  
Vol 8 (5) ◽  
pp. 259
Author(s):  
Mohammed Ali

In this study, the researcher has advocated the importance of human intelligence in language learning since software or any Learning Management System (LMS) cannot be programmed to understand the human context as well as all the linguistic structures contextually. This study examined the extent to which language learning is perilous to machine learning and its programs such as Artificial Intelligence (AI), Pattern Recognition, and Image Analysis used in much assistive learning techniques such as voice detection, face detection and recognition, personalized assistants, besides language learning programs. The researchers argue that language learning is closely associated with human intelligence, human neural networks and no computers or software can claim to replace or replicate those functions of human brain. This study thus posed a challenge to natural language processing (NLP) techniques that claimed having taught a computer how to understand the way humans learn, to understand text without any clue or calculation, to realize the ambiguity in human languages in terms of the juxtaposition between the context and the meaning, and also to automate the language learning process between computers and humans. The study cites evidence of deficiencies in such machine learning software and gadgets to prove that in spite of all technological advancements there remain areas of human brain and human intelligence where a computer or its software cannot enter. These deficiencies highlight the limitations of AI and super intelligence systems of machines to prove that human intelligence would always remain superior.


Author(s):  
S. Sasikala ◽  
S. J. Subhashini ◽  
P. Alli ◽  
J. Jane Rubel Angelina

Machine learning is a technique of parsing data, learning from that data, and then applying what has been learned to make informed decisions. Deep learning is actually a subset of machine learning. It technically is machine learning and functions in the same way, but it has different capabilities. The main difference between deep and machine learning is, machine learning models become well progressively, but the model still needs some guidance. If a machine learning model returns an inaccurate prediction, then the programmer needs to fix that problem explicitly, but in the case of deep learning, the model does it by itself. Automatic car driving system is a good example of deep learning. On other hand, Artificial Intelligence is a different thing from machine learning and deep learning. Deep learning and machine learning both are the subsets of AI.


2021 ◽  
Vol 49 (4) ◽  
pp. 714-719
Author(s):  
Oliver C. Turner ◽  
Brian Knight ◽  
Aleksandra Zuraw ◽  
Geert Litjens ◽  
Daniel G. Rudmann

The 2019 manuscript by the Special Interest Group on Digital Pathology and Image Analysis of the Society of Toxicologic pathology suggested that a synergism between artificial intelligence (AI) and machine learning (ML) technologies and digital toxicologic pathology would improve the daily workflow and future impact of toxicologic pathologists globally. Now 2 years later, the authors of this review consider whether, in their opinion, there is any evidence that supports that thesis. Specifically, we consider the opportunities and challenges for applying ML (the study of computer algorithms that are able to learn from example data and extrapolate the learned information to unseen data) algorithms in toxicologic pathology and how regulatory bodies are navigating this rapidly evolving field. Although we see similarities with the “Last Mile” metaphor, the weight of evidence suggests that toxicologic pathologists should approach ML with an equal dose of skepticism and enthusiasm. There are increasing opportunities for impact in our field that leave the authors cautiously excited and optimistic. Toxicologic pathologists have the opportunity to critically evaluate ML applications with a “call-to-arms” mentality. Why should we be late adopters? There is ample evidence to encourage engagement, growth, and leadership in this field.


Author(s):  
Anusha L. ◽  
Nagaraja G S

Artificial intelligence (AI) is the science that allows computers to replicate human intelligence in areas such as decision-making, text processing, visual perception. Artificial Intelligence is the broader field that contains several subfields such as machine learning, robotics, and computer vision. Machine Learning is a branch of Artificial Intelligence that allows a machine to learn and improve at a task over time. Deep Learning is a subset of machine learning that makes use of deep artificial neural networks for training. The paper proposed on outlier detection for multivariate high dimensional data for Autoencoder unsupervised model.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11451
Author(s):  
Ruiyang Ren ◽  
Haozhe Luo ◽  
Chongying Su ◽  
Yang Yao ◽  
Wen Liao

Artificial intelligence has been emerging as an increasingly important aspect of our daily lives and is widely applied in medical science. One major application of artificial intelligence in medical science is medical imaging. As a major component of artificial intelligence, many machine learning models are applied in medical diagnosis and treatment with the advancement of technology and medical imaging facilities. The popularity of convolutional neural network in dental, oral and craniofacial imaging is heightening, as it has been continually applied to a broader spectrum of scientific studies. Our manuscript reviews the fundamental principles and rationales behind machine learning, and summarizes its research progress and its recent applications specifically in dental, oral and craniofacial imaging. It also reviews the problems that remain to be resolved and evaluates the prospect of the future development of this field of scientific study.


Sign in / Sign up

Export Citation Format

Share Document