scholarly journals Endocrine Responses to Sport-Related Brain Injury in Female Athletes: A Narrative Review and a Call for Action

Endocrines ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 99-108
Author(s):  
Donna Duffy ◽  
Kirsty J. Elliott-Sale ◽  
Hanna Gardner ◽  
Samantha Goldenstein ◽  
Laurie Wideman

Sport-related brain injury (SRBI) occurs when a blow to the head causes the brain to move back and forth in the skull, and can lead to neuroendocrine dysfunction. Research has shown that males and females experience and recover from SRBI differently, yet most of what is known regarding diagnosis, treatment, and recovery of SRBI is based on male normative data even though females meet or exceed incidence numbers of SRBIs compared to those of males. Females also have been known to have worse outcomes and a greater number of symptoms following SRBI than males. Research is limited as to why females have worse outcomes, but sex hormones have been suggested as a potential reason. SRBI may cause a dysregulation of the hypothalamic–pituitary–gonadal (HPG) axis, which is responsible for regulating the sex hormones estrogen and progesterone. Initial research has shown that SRBI may suppress estrogen and progesterone, and the concentration of these sex hormones could be indicative of injury severity and recovery trajectory. This review discusses the sex-specific differences in SRBI and also the future direction of research that is needed in order to identify the repercussions of SRBIs for female athletes, which will eventually lead to better clinical treatment, sideline care, and recovery profiles.

2016 ◽  
Vol 18 (4) ◽  
pp. 373-383 ◽  

Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.


2020 ◽  
Vol 5 (1) ◽  
pp. e000483 ◽  
Author(s):  
Abid D Khan ◽  
Anna J Elseth ◽  
Jacqueline A Brosius ◽  
Eliza Moskowitz ◽  
Sean C Liebscher ◽  
...  

BackgroundThe Brain Injury Guidelines provide an algorithm fortreating patients with traumatic brain injury (TBI) and intracranial hemorrhage(ICH) that does not mandate hospital admission, repeat head CT, orneurosurgical consult for all patients. The purposes of this study are toreview the guidelines’ safety, to assess resource utilization, and to proposeguideline modifications that improve patient safety and widespreadreproducibility.MethodsA multi-institutional review of TBI patients was conducted. Patients with ICH on CT were classified as BIG 1, 2, or 3 based on the guidelines. BIG 3 patients were excluded. Variables collected included demographics, Injury Severity Score (ISS), hospital length of stay (LOS), intensive care unit LOS, number of head CTs, type of injury, progression of injury, and neurosurgical interventions performed.Results269 patients met inclusion criteria. 98 were classifiedas BIG 1 and 171 as BIG 2. The median length of stay (LOS) was 2 (2,4)days and the ICU LOS was 1 (0,2) days. Most patients had a neurosurgeryconsultation (95.9%) and all patients included had a repeat head CT. 370repeat head CT scans were performed, representing 1.38 repeat scans perpatient. 11.2% of BIG 1 and 11.1% of BIG 2 patients demonstratedworsening on repeat head CT. Patients who progressed exhibited a higherISS (14 vs. 10, p=0.040), and had a longer length of stay (4 vs. 2 days;p=0.015). After adjusting for other variables, the presence of epiduralhematoma (EDH) and intraparenchymal hematoma were independent predictors ofprogression. Two BIG 2 patients with EDH had clinical deteriorationrequiring intervention.DiscussionThe Brain Injury Guidelines may improve resourceallocation if utilized, but alterations are required to ensure patientsafety. The modified Brain Injury Guidelines refine the originalguidelines to enhance reproducibility and patient safety while continuing toprovide improved resource utilization in TBI management.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Veera Selvan ◽  
Shailesh Ganpule ◽  
Nick Kleinschmit ◽  
Namas Chandra

Blast waves generated in the field explosions impinge on the head-brain complex and induce mechanical pressure pulses in the brain resulting in traumatic brain injury. Severity of the brain injury (mild to moderate to severe) is dependent upon the magnitude and duration of the pressure pulse, which in turn depends on the intensity and duration of the oncoming blast wave. A fluid-filled cylinder is idealized to represent the head-brain complex in its simplest form; the cylinder is experimentally subjected to an air blast of Friedlander type, and the temporal variations of cylinder surface pressures and strains and fluid pressures are measured. Based on these measured data and results from computational simulations, the mechanical loading pathways from the external blast to the pressure field in the fluid are identified; it is hypothesized that the net loading at a given material point in the fluid comprises direct transmissive loads and deflection-induced indirect loads. Parametric studies show that the acoustic impedance mismatches between the cylinder and the contained fluid as well as the flexural rigidity of the cylinder determine the shape/intensity of pressure pulses in the fluid.


Author(s):  
Linda Hägglund ◽  
Magnus Olivecrona ◽  
Lars-Owe D. Koskinen

Abstract Background This study is a substudy of a prospective consecutive double-blinded randomized study on the effect of prostacyclin in severe traumatic brain injury (sTBI). The aims of the present study were to investigate whether there was a correlation between brain and subcutaneous glycerol levels and whether the ratio of interstitial glycerol in the brain and subcutaneous tissue (glycerolbrain/sc) was associated with tissue damage in the brain, measured by using the Rotterdam score, S-100B, neuron-specific enolase (NSE), the Injury Severity Score (ISS), the Acute Physiology and Chronic Health Evaluation Score (APACHE II), and trauma type. A potential association with clinical outcome was explored. Methods Patients with sTBI aged 15–70 years presenting with a Glasgow Coma Scale Score ≤ 8 were included. Brain and subcutaneous adipose tissue glycerol levels were measured through microdialysis in 48 patients, of whom 42 had complete data for analysis. Brain tissue damage was also evaluated by using the Rotterdam classification of brain computed tomography scans and the biochemical biomarkers S-100B and NSE. Results In 60% of the patients, a positive relationship in glycerolbrain/sc was observed. Patients with a positive correlation of glycerolbrain/sc had slightly higher brain glycerol levels compared with the group with a negative correlation. There was no significant association between the computed tomography Rotterdam score and glycerolbrain/sc. S-100B and NSE were associated with the profile of glycerolbrain/sc. Our results cannot be explained by the general severity of the trauma as measured by using the Injury Severity Score or Acute Physiology and Chronic Health Evaluation Score. Conclusions We have shown that peripheral glycerol may flux into the brain. This effect is associated with worse brain tissue damage. This flux complicates the interpretation of brain interstitial glycerol levels. We remind the clinicians that a damaged blood–brain barrier, as seen in sTBI, may alter the concentrations of various substances, including glycerol in the brain. Awareness of this is important in the interpretation of the data bedside as well in research.


2021 ◽  
Author(s):  
Rinaldo Catta-Preta ◽  
Iva Zdillar ◽  
Bradley Jenner ◽  
Emily T. Doisy ◽  
Kayleen Tercovich ◽  
...  

Traumatic brain injury (TBI) causes acute and lasting impacts on the brain, driving pathology along anatomical, cellular, and behavioral dimensions. Rodent models offer the opportunity to study TBI in a controlled setting, and enable analysis of the temporal progression that occurs from injury to recovery. We applied transcriptomic and epigenomic analysis, characterize gene expression and in ipsilateral hippocampus at 1 and 14 days following moderate lateral fluid percussion (LFP) injury. This approach enabled us to identify differential gene expression (DEG) modules with distinct expression trajectories across the two time points. The major DEG modules represented genes that were up- or downregulated acutely, but largely recovered by 14 days. As expected, DEG modules with acute upregulation were associated with cell death and astrocytosis. Interestingly, acutely downregulated DEGs related to neurotransmission mostly recovered by two weeks. Upregulated DEG modules related to inflammation were not necessarily elevated acutely, but were strongly upregulated after two weeks. We identified a smaller DEG module with delayed upregulation at 14 days including genes related to cholesterol metabolism and amyloid beta clearance. Finally, differential expression was paralleled by changes in H3K4me3 at the promoters of differentially expressed genes at one day following TBI. Following TBI, changes in cell viability, function and ultimately behavior are dynamic processes. Our results show how transcriptomics in the preclinical setting has the potential to identify biomarkers for injury severity and/or recovery, to identify potential therapeutic targets, and, in the future, to evaluate efficacy of an intervention beyond measures of cell death or spatial learning.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Nasya Mendoza-Elias ◽  
Sandi Mackey ◽  
Lisa Jasak ◽  
Michael Rosenblatt ◽  
Subu N Magge ◽  
...  

Abstract INTRODUCTION Traumatic head bleeds (THBs) are one of the most common neurosurgical consults in the trauma/acute care setting. U.S. adults on monotherapy aspirin (mASA) are presumed to have increased risk for Worsened outcomes after THBs. It is crucial to understand the effect mASA has on THBs. METHODS A retrospective review of prospectively collected data on THBs at a single center from 2013 to 2018 collected age, BIG category, aspirin use and dose, Injury Severity Score (ISS), length of stay (LOS), and days in intensive care unit (ICU days). Please refer to the Brain Injury Guideline protocol as defined by the University of Arizona study. All patients were categorized according to their imaging alone. For example, a patient on mASA with an initial CT head of BIG 1 category is coded as “BIG 1a,” as opposed to “BIG 3,” per BIG brain injury guidelines. RESULTS A total of 630 patients (mean age 71.5 yr) were included. MASA use in BIG-1 and BIG-2 graded THBs did not increase LOS (P = .79; P = .159) and ICU days (P = .74; P = .089) when compared to non-aspirin counterparts. MASA use in BIG-1 and BIG-2 THBs has significantly shorter LOS (P < .0001; P < .0001) and fewer ICU days (P < .0001; P < .0001) when compared to BIG-3 counterparts. MASA use in BIG-1 and BIG-2 THBs resulted in lower ISS as compared to BIG-3 THBs (P < .0001; P < .0001). BIG-3 THBs on mASA had decreased ISS when compared to non-aspirin counterparts (P = .0001). There was no difference between BIG-2 THBs with or without mASA use (P = .353). CONCLUSION There is no significant increase in ISS, LOS, or ICU days in patients on mASA with THBs. Patients on mASA therapy behave similar hospital stays as compared to non-aspirin counterparts, requiring shorter hospitalization/ICU days.


Metallomics ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 66-70 ◽  
Author(s):  
Blaine R. Roberts ◽  
Dominic J. Hare ◽  
Catriona A. McLean ◽  
Alison Conquest ◽  
Monica Lind ◽  
...  

Following acute brain injury (<3 hours post-event), cobalt levels in the brain are significantly elevated. This elevation may have important implications for positron emission tomography neuroimaging for assessing brain injury severity.


2019 ◽  
Vol 3 (6) ◽  
pp. 707-711 ◽  
Author(s):  
Andrew Peterson ◽  
Adrian M. Owen

In recent years, rapid technological developments in the field of neuroimaging have provided several new methods for revealing thoughts, actions and intentions based solely on the pattern of activity that is observed in the brain. In specialized centres, these methods are now being employed routinely to assess residual cognition, detect consciousness and even communicate with some behaviorally non-responsive patients who clinically appear to be comatose or in a vegetative state. In this article, we consider some of the ethical issues raised by these developments and the profound implications they have for clinical care, diagnosis, prognosis and medical-legal decision-making after severe brain injury.


2020 ◽  
Vol 5 (1) ◽  
pp. 88-96
Author(s):  
Mary R. T. Kennedy

Purpose The purpose of this clinical focus article is to provide speech-language pathologists with a brief update of the evidence that provides possible explanations for our experiences while coaching college students with traumatic brain injury (TBI). Method The narrative text provides readers with lessons we learned as speech-language pathologists functioning as cognitive coaches to college students with TBI. This is not meant to be an exhaustive list, but rather to consider the recent scientific evidence that will help our understanding of how best to coach these college students. Conclusion Four lessons are described. Lesson 1 focuses on the value of self-reported responses to surveys, questionnaires, and interviews. Lesson 2 addresses the use of immediate/proximal goals as leverage for students to update their sense of self and how their abilities and disabilities may alter their more distal goals. Lesson 3 reminds us that teamwork is necessary to address the complex issues facing these students, which include their developmental stage, the sudden onset of trauma to the brain, and having to navigate going to college with a TBI. Lesson 4 focuses on the need for college students with TBI to learn how to self-advocate with instructors, family, and peers.


Sign in / Sign up

Export Citation Format

Share Document