Norway Spruce Seedlings from an Eastern Baltic Provenance Show Tolerance to Simulated Drought
In Northern Europe, an increase in heterogeneity of summer precipitation regime will subject forests to water deficit and drought. This is particularly topical for Norway spruce (Picea abies Karst.), which is a drought sensitive, yet economically important species. Nevertheless, local populations still might be highly plastic and tolerant, supporting their commercial application. Accordingly, the tolerance of Norway spruce seedlings from an Eastern Baltic provenance (western part of Latvia) to artificial drought according to soil type was assessed in a shelter experiment. To simulate drought, seedlings were subjected to reduced amounts (0%, 25%, 50%, 75%, and 100%) of naturally occurring precipitation (irrigation intensity). Three soil types (oligotrophic mineral, mesotrophic mineral, and peat) were tested. Seedling height, chlorophyll a concentration, and fluorescence parameters were measured. Both growth and photochemical reactions were affected by the irrigation intensity, the effect of which experienced an interacted with soil type, implying complex controls of drought sensitivity. Seedlings were more sensitive to irrigation intensity on mesotrophic mineral soil, as suggested by growth and photosynthetic activity. However, the responses were nonlinear, as the highest performance (growth and fluorescence parameters) of seedlings occurred in response to intermediate drought. On peat soil, which had the highest water-bearing capacity, an inverse response to irrigation intensity was observed. In general, fluorescence parameters were more sensitive and showed more immediate reaction to soil water deficit than concentration of chlorophyll on mesotrophic mineral and peat soils, while the latter was a better indicator of seedling performance on oligotrophic soil. This indicated considerable plastic acclimation and hence tolerance of seedlings from the local Norway spruce population to drought, though drought sensitivity is age-dependent.