scholarly journals Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 666
Author(s):  
Guilin Han ◽  
Anton Eisenhauer ◽  
Jie Zeng ◽  
Man Liu

In order to better constrain calcium cycling in natural soil and in soil used for agriculture, we present the δ44/40Ca values measured in rainwater, groundwater, plants, soil, and bedrock samples from a representative karst forest in SW China. The δ44/40Ca values are found to differ by ≈3.0‰ in the karst forest ecosystem. The Ca isotope compositions and Ca contents of groundwater, rainwater, and bedrock suggest that the Ca of groundwater primarily originates from rainwater and bedrock. The δ44/40Ca values of plants are lower than that of soils, indicating the preferential uptake of light Ca isotopes by plants. The distribution of δ44/40Ca values in the soil profiles (increasing with soil depth) suggests that the recycling of crop-litter abundant with lighter Ca isotope has potential effects on soil Ca isotope composition. The soil Mg/Ca content ratio probably reflects the preferential plant uptake of Ca over Mg and the difference in soil maturity. Light Ca isotopes are more abundant in mature soils than nutrient-depleted soils. The relative abundance in the light Ca isotope (40Ca) is in the following order: farmland > burnt grassland > forests > grassland > shrubland. Our results further indicate that biological fractionation in a soil–plant system is a vital factor for Ca–geochemical transformations in soil surface systems.

1971 ◽  
Vol 2 (2) ◽  
pp. 79-92 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
H. C. ASLYNG

The lysimeter installation described comprises 36 concrete tanks each with a soil surface of 4 m2. The installation is useful for plant growth experiments under natural conditions involving different treatment combined with various controlled water supplies. The ground installation is at least 20 cm below the soil surface and tillage can be done with field implements. The lysimeter tanks are provided with a drainage system which can drain the soil at the bottom (100 cm depth) to a tension of up to 100 cm. A constant ground-water table at less than 100 cm soil depth can also be maintained. The soil moisture content at different depths is determined from an underground tunnel by use of gamma radiation equipment in metal tubes horizontally installed in the soil. Rainfall is prevented by a movable glass roof automatically operated and controlled by a special rain sensor. Water is applied to the soil surface with a special trickle irrigation system consisting of a set of plastic tubes for each lysimeter tank and controlled from the tunnel. Fertilizers in controlled amount can be applied with the irrigation water.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 779
Author(s):  
Václav Voltr ◽  
Ladislav Menšík ◽  
Lukáš Hlisnikovský ◽  
Martin Hruška ◽  
Eduard Pokorný ◽  
...  

The content of organic matter in the soil, its labile (hot water extractable carbon–HWEC) and stable (soil organic carbon–SOC) form is a fundamental factor affecting soil productivity and health. The current research in soil organic matter (SOM) is focused on individual fragmented approaches and comprehensive evaluation of HWEC and SOC changes. The present state of the soil together with soil’s management practices are usually monitoring today but there has not been any common model for both that has been published. Our approach should help to assess the changes in HWEC and SOC content depending on the physico-chemical properties and soil´s management practices (e.g., digestate application, livestock and mineral fertilisers, post-harvest residues, etc.). The one- and multidimensional linear regressions were used. Data were obtained from the various soil´s climatic conditions (68 localities) of the Czech Republic. The Czech farms in operating conditions were observed during the period 2008–2018. The obtained results of ll monitored experimental sites showed increasing in the SOC content, while the HWEC content has decreased. Furthermore, a decline in pH and soil´s saturation was documented by regression modelling. Mainly digestate application was responsible for this negative consequence across all soils in studied climatic regions. The multivariate linear regression models (MLR) also showed that HWEC content is significantly affected by natural soil fertility (soil type), phosphorus content (−30%), digestate application (+29%), saturation of the soil sorption complex (SEBCT, 21%) and the dose of total nitrogen (N) applied into the soil (−20%). Here we report that the labile forms (HWEC) are affected by the application of digestate (15%), the soil saturation (37%), the application of mineral potassium (−7%), soil pH (−14%) and the overall condition of the soil (−27%). The stable components (SOM) are affected by the content of HWEC (17%), soil texture 0.01–0.001mm (10%), and input of organic matter and nutrients from animal production (10%). Results also showed that the mineral fertilization has a negative effect (−14%), together with the soil depth (−11%), and the soil texture 0.25–2 mm (−21%) on SOM. Using modern statistical procedures (MRLs) it was confirmed that SOM plays an important role in maintaining resp. improving soil physical, biochemical and biological properties, which is particularly important to ensure the productivity of agroecosystems (soil quality and health) and to future food security.


2020 ◽  
Vol 12 (1) ◽  
pp. 232-241
Author(s):  
Na Ta ◽  
Chutian Zhang ◽  
Hongru Ding ◽  
Qingfeng Zhang

AbstractTillage and slope will influence soil surface roughness that changes during rainfall events. This study tests this effect under controlled conditions quantified by geostatistical and fractal indices. When four commonly adopted tillage practices, namely, artificial backhoe (AB), artificial digging (AD), contour tillage (CT), and linear slope (CK), were prepared on soil surfaces at 2 × 1 × 0.5 m soil pans at 5°, 10°, or 20° slope gradients, artificial rainfall with an intensity of 60 or 90 mm h−1 was applied to it. Measurements of the difference in elevation points of the surface profiles were taken before rainfall and after rainfall events for sheet erosion. Tillage practices had a relationship with fractal indices that the surface treated with CT exhibited the biggest fractal dimension D value, followed by the surfaces AD, AB, and CK. Surfaces under a stronger rainfall tended to have a greater D value. Tillage treatments affected anisotropy differently and the surface CT had the strongest effect on anisotropy, followed by the surfaces AD, AB, and CK. A steeper surface would have less effect on anisotropy. Since the surface CT had the strongest effect on spatial variability or the weakest spatial autocorrelation, it had the smallest effect on runoff and sediment yield. Therefore, tillage CT could make a better tillage practice of conserving water and soil. Simultaneously, changes in semivariogram and fractal parameters for surface roughness were examined and evaluated. Fractal parameter – crossover length l – is more sensitive than fractal dimension D to rainfall action to describe vertical differences in soil surface roughness evolution.


2021 ◽  
Vol 9 (8) ◽  
pp. 797
Author(s):  
Shu Lin ◽  
Dengfeng Fu ◽  
Zefeng Zhou ◽  
Yue Yan ◽  
Shuwang Yan

Vacuum preloading combined with prefabricated vertical drains (PVDs) has the potential to improve the soft sediments under water, however, its development is partly limited by the unclear understanding of the mechanism. This paper aims to extend the comprehension of the influential mechanism of overlapping water in the scenario of underwater vacuum preloading with PVDs. The systematic investigations were conducted by small strain finite element drained analyses, with the separated analysis schemes considering suction-induced consolidation, seepage and their combination. The development of settlement in the improved soil region and the evolution of seepage flow from the overlapping water through the non-improved soil region into improved zone are examined in terms of the build-up of excess pore pressure. Based on the results of numerical analyses, a theoretical approach was set out. It was capable to estimate the time-dependent non-uniform settlement along the improved soil surface in response to the combined effects of suction-induced consolidation and seepage. The difference of underwater and onshore vacuum preloading with PVDs is discussed with some practical implication and suggestion provided.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 114-120 ◽  
Author(s):  
Husrev Mennan ◽  
Mathieu Ngouajio

Catchweed bedstraw and wild mustard each produce two populations per year: a winter population (WP) in June, and a summer population (SP) in September. Experiments were conducted to determine whether the WP and SP differ in seed mass and seasonal germination. Seeds of both weeds were buried at 0, 5, 10, and 20 cm in cultivated fields, and retrieved at monthly intervals for 24 mo for germination tests in the laboratory. Additionally, seedling emergence from seeds buried at 0, 5, and 10 cm in the field was evaluated for 1 yr. Seeds from the WP were heavier than those from the SP for both species. Germination of exhumed seeds was affected by burial depth and by seed population. It was highest for seeds that remained on the soil surface and declined with increasing depth of burial. The WP of catchweed bedstraw produced two germination peaks per year, whereas the SP and all populations of wild mustard had only one peak. The WP of both weeds germinated earlier than the SP. Seedling emergence for both species in the field was greater for the WP than for the SP. Increasing soil depth reduced seedling emergence of both the WP and SP of wild mustard and affected only the WP of catchweed bedstraw. We conclude that the WP and SP of catchweed bedstraw and wild mustard seeds used in this study differed in seed mass, seasonal germination, and seedling emergence. The ability of a WP to produce large seeds that germinate early and have two germination peaks per year could make these populations a serious problem in cropping systems.


1999 ◽  
Vol 47 (2) ◽  
pp. 165 ◽  
Author(s):  
C.-H. Wahren ◽  
R. J. Williams ◽  
W. A. Papst

The botanical composition and structure of wetland vegetation from seven sites in the alpine and subalpine tracts of the Bogong High Plains was sampled in 1995 and 1996. Sites were in the vicinity of Mts Nelse, Cope and Fainter. Sampling was based on contiguous 1-m2 quadrats along transects 20−70 m long across each wetland. Samples were ordinated using non-metric multidimensional scaling (NMDS). Floristic variation was assessed both within selected individual wetlands, and between wetlands from different regions. The relationship between the ordinations and environmental variables such as soil surface texture, soil depth and the amount of bare ground was tested by fitting vectors. Three dominant vegetation assemblages were identified. Closed heath, of hygrophyllous, scleromorphic shrubs such as Richea continentis and Baeckea gunniana, the rush Empodisma minus and the moss Sphagnum cristatum occurred on the deeper peats. Low open heath of Epacris glacialis and Danthonia nivicola occurred on shallow peats. Herbfields of Caltha introloba and Oreobolus pumilio occurred on stony pavements in two different physiographic situations&horbar;on relatively steep slopes (10−20°) at the head of wetlands, and on flat ground (slope < 2°), below the head of wetlands. The pavements on the steeper sites appeared to be associated with periglacial features such as solifluction lobes and terraces. Those on the flatter ground appeared to have been derived more recently. Wetlands in the Mt Cope region consisted of closed heath, low open heath and pavement herbfield in various proportions. Wetlands on Mt Fainter, which are subject to heavy trampling by cattle, were in a degraded condition, with a low cover of major hygrophyllous mosses and shrubs, and a high cover of introduced species. Long-ungrazed wetlands in a 50-year exclosure at Rocky Valley had high cover of closed heath, no pavements, numerous ponds and virtually no entrenched drainage channels or exposed peat. The Caltha herbfields are significant features nationally, both floristically and geomorphologically. Alpine and subalpine wetlands have been listed under the Victorian Flora and Fauna Guarantee Act 1988, and continued grazing by cattle is not compatible with the conservation objectives for this alpine vegetation type.


Geology ◽  
2021 ◽  
Author(s):  
Gabriella D. Kitch ◽  
Andrew D. Jacobson ◽  
Dustin T. Harper ◽  
Matthew T. Hurtgen ◽  
Bradley B. Sageman ◽  
...  

Ocean acidification (OA) during the Paleocene-Eocene thermal maximum (PETM) likely caused a biocalcification crisis. The calcium isotope composition (δ44/40Ca) of primary carbonate producers may be sensitive to OA. To test this hypothesis, we constructed the first high-resolution, high-precision planktic foraminiferal δ44/40Ca records before and across the PETM. The records employ specimens of Morozovella spp. collected from Ocean Drilling Program Sites 1209 (Shatsky Rise, Pacific Ocean) and 1263 (Walvis Ridge, Atlantic Ocean). At Site 1209, δ44/40Ca values start at –1.33‰ during the Upper Paleocene and increase to a peak of –1.15‰ immediately before the negative carbon isotope excursion (CIE) that marks the PETM onset. Values remain elevated through the PETM interval and decrease into the earliest Eocene. A shorter-term record for Site 1263 shows a similar trend, although δ44/40Ca values are on average 0.22‰ lower and decrease shortly after the CIE onset. The trends support neither diagenetic overprinting, authigenic carbonate additions, nor changes in the δ44/40Ca value of seawater. Rather, they are consistent with a kinetic isotope effect, whereby calcite δ44/40Ca values inversely correlate with precipitation rate. Geologically rapid Ca isotope shifts appear to reflect the response of Morozovella to globally forced changes in the local carbonate geochemistry of seawater. All data combined suggest that the PETM-OA event occurred near the peak of a gradual reduction in seawater carbonate ion concentrations during a time of elevated atmospheric pCO2, potentially driven by North Atlantic igneous province emplacement.


2017 ◽  
Vol 9 (5) ◽  
pp. 83
Author(s):  
Ngowari Jaja ◽  
Monday Mbila ◽  
Yong Wang

Silvicultural thinning and burning are common management practices that are widely used to address ecosystem problems such as tree stocking and general forest health. However, high-severity fire has variable effects on soils, resulting in damages which are directly or indirectly reflected on the trace metal chemistry of the soil. This study was conducted to evaluate the trace metal variation at the Bankhead National Forest in Northern Alabama following the silvicultural thinning and burning. The experimental site had treatments consisting of two burning patterns and three levels of thinning as part of an overall treatment of three burning patterns and three levels of thinning applied to nine treatment plots to fit a completely randomized block design experiment. Four treatments sites were used for this study and samples were collected from soil profile pits excavated at representative plots within each treatment. The samples were analyzed for trace metals-As, Cu, Ni, Zn and Pb-using Perkin Elmer 2100 ICP-OES. Post treatment samples indicated that the trace metal concentrations generally decreased with soil depth. Copper, Ni, and Zn at the Pre-burn site gradually increased with depth to a maximum concentration at about 50 cm below the soil surface. Arsenic in the surface horizons increased by 156% in the burn-only sites, 54% in the thin-only treatment, 30% for the burn and thin treatments. Such differences were unlikely due to differences in the geochemistry of the parent material, but likely due to anthropogenic activities and possibly the forest management practices in question.


Author(s):  
Mishal Ahmad Alashari

Accelerated Bridge Construction (ABC) is a common term given to the combination of different procedures that help reduce the construction period of a project.  Utilizing these different procedures on bridge replacement/rehabilitation projects presents several benefits, including reduced traffic congestion and improved on-site safety.  The purpose of this paper is to recognize the difference between Accelerated Bridge Construction and Conventional Bridge Construction, and the process of deciding which approach is more suitable for a particular project.  Specifically, this paper explores the desirable condition in which utilizing ABC would be most beneficial for the owner, builder, community, and environment.  The methodology used in this paper is the content analysis method, which includes a large amount of textual information.  The analytical constructs may be obtained from existing practices, experience, knowledge of experts, and previous research studies.  Throughout this research, data and information was collected from different scientific articles, research papers, books, and journals.  The results conclude that when a project is located in a critical area, and time is a vital factor, the ABC approach can be much more beneficial compared to the conventional approach.  However, this method cannot be applicable unless owners have financial capability, skilled and competent workers, and the required specialized equipment for the job.  Thus, utilizing prefabrication elements is greatly advantageous, but only when owners have the sufficient recourses.


Author(s):  
Dmitry Kondratyuk ◽  
Vitaliy Komaha

For mowing grass during harvesting of hay or haylage, support-free mowers with rotary movement of knives are used mainly, the productivity of which is much greater than segment-finger mowers. Free-cutting cutting apparatuses with rotational movement of knives happen with their rotation around the vertical (rotary) and horizontal (rotary) axes. Mowers that are equipped with rotary cutting devices significantly grind grass, so they are used in mower-grinders and lawn mowers. The purpose of the work is to substantiate the methodology for calculating the structural and kinematic parameters of rotary cutting devices, corresponding to the conditions of their use. The main parameters characterizing the operation of rotary cutting devices are: area, mows than in one revolution of the disk; knife working length; overlapping knives of adjacent rotors; cutting speed. In determining the basic parameters of the rotary cutting apparatus of the mower, the following assumptions were made. It was believed that the angular speed of the rotor and the translational speed of the mower are unchanged, and the movement of the unit is straightforward. In addition, the cutting apparatus performs mowing in a plane parallel to the soil surface, that is, in a plane perpendicular to most plant stems. It is shown that the absolute speed of any point of the knife varies from the maximum value equal to the sum of the peripheral speed of this point and the aggregation speed of the mower, to the minimum - the difference of the above speeds. It was found that the working length of the cutting edge of the knife is directly proportional to the speed of aggregation of the mower and inversely proportional to the angular velocity of the rotor and the number of knives mounted on it. The overlap of the path of the knives of adjacent rotors depends on the radius of the rotor; the number of knives mounted on it and the kinematic mode of operation of the cutting apparatus. Moreover, an increase in the radius of the rotor requires an increase in overlap, and an increase in the kinematic mode and the number of knives leads to a decrease in the overlap between the paths of the knives. The resulting dependence, which allows you to determine the area, mows than in one revolution of the rotor.


Sign in / Sign up

Export Citation Format

Share Document