scholarly journals Regeneration Dynamics on Treefall Mounds and Pits for 10 Years after a Windfall in a Natural Mixed Forest

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1064
Author(s):  
Toshiya Yoshida

The treefall mounds and pits resulting from uprooting caused by strong winds is an indispensable microtopography for the regeneration of many tree species through improved light conditions and mineral soil exposure. These microtopographies are expected to become more important because global warming is predicted to increase windstorm frequency. This study aimed to clarify the characteristics of mounds and pits that contribute to the early establishment of major tree species in a natural mixed forest of northern Japan. The 39 tip-up mounds caused simultaneously by a strong typhoon in September 2004 were selected. In 2006, light intensity and soil moisture contents were measured in each mound and pit. Seedlings of all tree species were counted, and in 2014, the height of saplings was measured. The initial seedling density, regardless of tree species, was significantly higher in the pits than on the mound, but the density at the 10-th growing season decreased significantly in the pits and was comparable between the two locations. Intense light conditions favor regeneration of Betula sp. (Betula platyphylla and B. ermanii). In contrast, for Abies sachalinensis and Picea glehnii, the light intensity had a negative effect, so it was concluded that regeneration of conifers would be limited under the condition where strong winds form large gaps.

2005 ◽  
Vol 35 (1) ◽  
pp. 175-188 ◽  
Author(s):  
Toshiya Yoshida ◽  
Yoko Iga ◽  
Megumi Ozawa ◽  
Mahoko Noguchi ◽  
Hideaki Shibata

Scarification is widely conducted in northern Japan to remove understory dwarf bamboo species in degraded forests for replacement with tree species. To explore ways to enhance species diversity and restoration of mixed forest at the treated site, we clarified the mechanisms that lead to compositional heterogeneity of plant species. We evaluated the relative importance of environmental factors (scarification properties, soil properties, light conditions, litter cover, and presence of canopy trees) for the demography of tall tree species (emergence, mortality, and growth) and whole vegetation structure (species diversity and composition) over the two growing seasons immediately following scarification. Of tall tree species, Betula spp. were dominant (60% in total density), followed by Abies sachalinensis (Fr. Schm.) Masters, Acer mono Maxim., and Phellodendron amurense Rupr. Light intensity was an important factor, having mostly negative effects on the demography of these species. Soil factors (e.g., nitrogen content, moisture) affected the demography mainly of shade-intolerant or hygrophilous species. In general, extreme environmental conditions led to the dominance of grasses, forbs, and lianas rather than tall trees. Maintenance of canopy cover, which limits light and supplies seeds as well as litter, proved to be most important in promoting plant species diversification on the scarification site.


2005 ◽  
Vol 156 (12) ◽  
pp. 481-486 ◽  
Author(s):  
Jurij Diaci ◽  
Lahorka Kozjek

The objective of our research was to examine the effect of canopy shading on beech sapling architecture in the oldgrowth silver fir-beech forests of Pecka and Rajhenavski Rog. In August 2003 we sampled one plot (352 m2) in a large gap in Pecka, which was a result of a strong windstorm in 1983, and eight small gaps (26–78 m2) with similar sapling heights (3.8–8 m). A ground view of each gap was drawn including the characteristics of gap border trees and the density of separate sapling layers was recorded. The height and diameter were measured for each sapling, as well as the following quality characteristics on selected dominant saplings: width of the crown,number of larger branches and knots (>1/3 DBH), intensity of stem bending, deviation from vertical growth, number of terminal shoots, and the type of damage. The results show a negative effect of high canopy shading (estimated relative light intensity was below 5%) on the architectural quality of saplings. A lower overall density of saplings, greater intensity of bending and deviation from vertical growth, a shorter stem length without branches, a larger number of saplings with two terminal shoots, and a larger number of damaged saplings were observed in small gaps.


2020 ◽  
Vol 3 (1) ◽  
pp. 49
Author(s):  
Edgaras Linkevičius ◽  
Gerda Junevičiūtė

Climate change and warming will potentially have profound effects on forest growth and yield, especially for pure stands in the near future. Thus, increased attention has been paid to mixed stands, e.g., pine and beech mixtures. However, the interaction of tree species growing in mixtures still remains unknown. Thus, the aim of this study was to investigate the impact of the interspecific and intraspecific competition to diameter, height, and crown width of pine and beech trees growing in mixtures, as well as to evaluate the impact of climatic indicators to the beech radial diameter increment. The data was collected in 2017 at the mixed mature pine beech double layer stand, located in the western part of Lithuania. The sample plot of 1.2 hectare was established and tree species, diameter at the breast height, tree height, height-to-crown base, height-to-crown width, and position were measured for all 836 trees. Additionally, a representative sample of radial diameter increments were estimated only for the beech trees by taking out core discs at the height of 1 m when the stand was partially cut. Competition analysis was based on the distance-dependent competition index, which was further based on crown parameters. Climatic effect was evaluated using classification and regression tree (CART) analysis. We found almost no interspecific competition effect to diameter, height, or crown width for both tree species growing in the first layer. However, it had an effect on beeches growing in the second layer. The intraspecific competition effect was important for pine and beech trees, showing a negative effect for both of them. Our results show the possible coexistence of these tree species due to niche differentiation. An analysis of climatic indicators from 1991–2005 revealed that precipitation from February–May of the current vegetation year and mean temperatures from July to September expressed radial diameter increment effects for beech trees. Low temperatures during March and April, as well as high precipitation during January, had a negative effect on beech radial increments. From 2006–2016, the highest effect on radial diameter increments was the mean temperatures from July to September, as well as the precipitation in January of the current year. From 1991–2016, the highest effect on radial diameter increments was the temperature from July to September 1991–2016 and the precipitation in June 1991–2016. Generally, cool temperatures and higher precipitation in June had a positive effect on beech radial increments. Therefore, our results show a sensitivity to high temperatures and droughts during summer amid Lithuanian’s growth conditions.


2021 ◽  
Author(s):  
Tatiane Viegas Debiasi ◽  
Anderson Kikuchi Calzavara ◽  
Ladaslav Sodek ◽  
Halley Caixeta Oliveira

2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


2005 ◽  
Vol 35 (11) ◽  
pp. 2671-2678 ◽  
Author(s):  
N Stenvall ◽  
T Haapala ◽  
S Aarlahti ◽  
P Pulkkinen

Root cuttings from five clones of hybrid aspen (Populus tremula L. × Populus tremuloides Michx.) obtained from 2-year-old stock plants were grown in a peat–sand mixture (soil) at four soil temperatures (18, 22, 26, and 30 °C). Half of the cuttings were grown in light and the rest in darkness. The root cuttings that were grown at the highest soil temperature sprouted and rooted significantly better than the cuttings grown at the lower temperatures. Light did not affect the sprouting of root cuttings but did have a negative effect on their rooting. Moreover, the clones varied significantly in sprouting and rooting percentages, as well as in the time required for sprouting. In general, higher soil temperatures hastened sprouting of the cuttings. Sprouting was also faster in the light than in the dark treatment. Differences in soil temperature, light conditions, or clone had no significant effect on rooting time.


Sign in / Sign up

Export Citation Format

Share Document