scholarly journals Influence of the Heating Method on the Efficiency of Biomethane Production from Expired Food Products

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
Joanna Kazimierowicz ◽  
Marcin Zieliński ◽  
Marcin Dębowski

The aim of the study was to determine the effect of heating with microwave electromagnetic radiation (EMR) on the efficiency of the methane fermentation (MF) of expired food products (EFP). The research was inspired by the positive effect of EMR on the production of biogas and methane from different organic substrates. The experiment was carried out on a laboratory scale in fully mixed, semi-continuous anaerobic reactors. The technological conditions were as follows: temperature, 35 ± 1 °C; organic load rate (OLR), 2.0 kgVS·m−3∙d−1; and hydraulic retention time (HRT), 40 days. The source of the EMR was a magnetron (electric power, 300 W). There was no statistically significant influence of the use of EMR on the achieved technological effects of MF. The efficiency of biogas production was 710 ± 35 dm3·kgVS−1 in the variant with EMR and 679 ± 26 dm3·kgVS−1 in the variant with convection heating (CH). The methane contents were 63.5 ± 2.4% (EMR) and 62.4 ± 4.0% (CH), and the cumulative methane production after 40 days was 271.2 and 288.6 dm3CH4, respectively.

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Joanna Kazimierowicz

The aim of the present study was to determine how thermal stimulation via electromagnetic microwave radiation impacts the yields of biogas and methane produced by methane fermentation of five selected energy crop species in anaerobic reactors. The resultant performance was compared with that of reactors with conventional temperature control. The highest biogas production capacity was achieved for maize silage and Virginia mallow silage (i.e., 680 ± 28 dm3N/kgVS and 506 ± 16 dm3N/kgVS, respectively). Microwave radiation as a method of heating anaerobic reactors provided a statistically-significantly boost in methane production from maize silage (18% increase). Biomethane production from maize silage rose from 361 ± 12 dm3N/kgVS to 426 ± 14 dm3N/kgVS. In the other experimental variants, the differences between methane concentrations in the biogas were non-significant.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1772
Author(s):  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Joanna Kazimierowicz

Whey is a primary by-product of dairy plants, and one that is often difficult to manage. As whey processing units are costly and complicated, only 15–20% of whey is recycled for use in the food industry. The difficulties in managing waste whey are particularly pronounced for small, local dairy plants. One possible solution to this problem is to use advanced and efficient digesters. The aim of this study was to present an innovative multi-section hybrid anaerobic bioreactor (M-SHAR) design and to identify how microwave radiation heating (MRH) affects methane fermentation of liquid dairy waste (LDW) primarily composed of acid whey. The MRH reactor was found to perform better in terms of COD removal and biogas production compared with the convection-heated reactor. The heating method had a significant differentiating effect at higher organic load rates (OLRs). With OLRs ranging from 15 to 25 kgCOD∙m−3∙d−1, the M-SHAR with MRH ensured a 5% higher COD removal efficiency and 12–20% higher biogas yields.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6626 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński

Technological solutions allowing the increase of the technological efficiency of anaerobic methods of wastewater treatment are still under investigation. The weaknesses of these solutions can be limited by the use of active fillings. The aim of the present study was to determine the impact of fluidized active filling on the effectiveness of anaerobic treatment of sugar-industry effluent, the production efficiency and the qualitative composition of the biogas produced. High, comparable (p = 0.05) effluent treatment results were observed at tested organic load rates between 4.0 and 6.0 kg COD (Chemical Oxygen Demand)/m3·d. The COD removal rate reached over 74%, biogas yields ranged from 356 ± 25 to 427 ± 14 dm3/kg CODremoved and the average methane contents were approximately 70%. A significant decrease in effluent treatment efficiency and methane fermentation was observed after increasing the organic load rate to 8.0 kg COD/m3·d, which correlated with decreased pH and FOS/TAC (volatile organic acid and buffer capacity ratio) increased to 0.44 ± 0.2. The use of fluidized active filling led to phosphorus removal with an efficiency ranged from 64.4 ± 2.4 to 81.2 ± 8.2% depending on the stage. Low concentration of total suspended solids in the treated effluent was also observed.


2018 ◽  
Vol 34 (6) ◽  
pp. 3100-3105
Author(s):  
Nyimas Yanqoritha ◽  
Muhammad Turmuzi ◽  
Irvan Irvan ◽  
Fatimah Batubara ◽  
Ilmi Ilmi

Wastewater of tofu industry contains very high organic content, then anaerobic process is the most suitable for degrading this liquid waste. The hybrid upflow anaerobic sludge blanket reactor (HUASBR) was applied in this study because it has the advantage in ensuring good contact between biomass and substrate where a suspension medium and anaerobic filter are able to withstand more biomass in the attached media. Processing Anaerobic process is carried out with the help of bacteria where bacteria need seeding and acclimatization. Acclimatization is the process of adaptation of microorganisms to wastewater to be treated. This adaptation process is carried out by adding waste water from the smallest concentration to the actual concentration. The purpose of this study is to determine the effect of variations in organic load rate (OLR) on the acclimatization process in removing COD, biogas production in accordance with the pH of the anaerobic degradation process so that the optimal process of the acclimatization process can be obtained. In this study, the acclimatization process took 200 days with variation of OLR in the range of 1.5 - 5.9 kg COD m-3 d-1 at HRT 24 hours and flow rate up (Vup) of 0.08 m/h. The objective of OLR variation was to evaluate acclimatization process on the HUASBR performance during process optimization. The highest biogas production and removal efficiency of COD were achieved in pH range of 6.5 - 7.6. While, the highest COD removal efficiency obtained was 86.57% on the 140th day and biogas production 7700 ml for OLR 4.8 kg COD m-3d-1 at HRT 24 h. Consequently, the optimum OLR for treating the tofu wastewater could be achieved up to 4.8 kg COD m-3d-1 and HRT 24h.


2017 ◽  
Vol 1 (1) ◽  
pp. 1 ◽  
Author(s):  
Purwinda Iriani ◽  
Yanti Suprianti ◽  
Fitria Yulistiani

Produksi biogas pada skala rumah tangga umumnya menggunakan teknologi fermentasi anaerobik di dalam satu biodigester (satu tahap), yang mengakomodasi dua tahap utama prinsip pembentukan biogas, yakni tahap asetogenesis dan tahap metanogenesis. Permasalahan yang muncul dari penggunaan digester biogas satu tahap adalah ketidakseimbangan proses fermentasi (peningkatan laju beban organik, waktu retensi senyawa organik yang lebih cepat, dan produktivitas biogas yang menjadi tidak maksimal). Untuk mengatasi hal tersebut, dilakukan penelitian yang bertujuan melakukan produksi biogas melalui sistem fermentasi anaerobik dua-tahap (two-stage anaerobic digestion), yang didukung dengan pengaturan pH pada proses metanogenik. Pada penelitian ini telah dilakukan proses aklimatisasi (aktivasi) bakteri yang menunjang proses asetogenik dan metanogenik pada skala laboratorium (19 L), dan selanjutnya menjadi inokulum untuk proses fermentasi skala pilot dengan kapasitas biodigester asetogenik 125 L dan metanogenik 500 L. Hasil proses aklimatisasi bakteri asetogenik pada media kotoran sapi menunjukkan adanya kestabilan pH yang dibutuhkan untuk reaksi asetogenik, yaitu pada kisaran pH 5-6, sedangkan kontrol menunjukkan perubahan pH yang masih ada di rentang pH netral yaitu 6-7. Kotoran sapi yang telah melalui proses asetogenik selama 2 minggu (pH awal 5,5), menjadi bahan baku pembuatan biogas pada digester metanogenik. Hasil dari proses metanogenik menunjukkan terjadinya peningkatan volume biogas dan komposisi gas metana (CH4) di dalam biogas. Komposisi CH4 tertinggi diperoleh pada hari ke-20 yakni 74,82% dengan volume produksi biogas tertinggi ada pada hari ke-22, dengan laju 8,87 L/hari. Potensi energi tertinggi yang diperoleh mencapai 217,66 kJ/hari.Generally, biogas production on the household scale is using one-stage anaerobic fermentation technology, which accommodates two main processes of biogas production, namely acetogenesis and methanogenesis. An obstacle of using one-stage biogas digester is the imbalance of the fermentation process that indicated by the increase of organic load rate and shorter retention time that lead to un-optimal biogas productivity. This research undertook the application of two-stage anaerobic digestion, supported by adjusting the initial pH for both acetogenic and methanogenic processes. Firstly, the research initiated by acclimatization (activation) process of acetogenic and methanogenic bacteria via fermentation in laboratory scale (19 L) digesters, separately. The results of acetogenic bacteria acclimatization process on cow dung media showed the pH stability needed for the reaction acetogenic, in the range of 5-6, while the control showed the pH changes still in the neutral pH range (6-7). The substrate from lab-scale acetogenic and methanogenic digester, then used as a starter for pilot-scale digester (125 L and 500 L, respectively). The mixture of water and cow dung were adjusted at initial pH 5.5 on acetogenic digester for 2 weeks. Those material were used for biogas production in the methanogenic digester. The result of the methanogenic process showed an increasing volume of biogas and the composition of methane (CH4) in the biogas. The highest CH4 composition was obtained on the 20th day, which reached 74.82%, and the highest volume of biogas production was at day 22, with the rate of 8.87 L/day. The highest energy potential obtained was 217.66 kJ/day.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 635 ◽  
Author(s):  
Siciliano ◽  
Limonti ◽  
Curcio ◽  
Calabrò

The composting process of organic fraction of municipal solid waste, besides to the residual compost, generates a wastewater that is characterized by a high organic load. The application of anaerobic processes represents an advantageous solution for the treatment and valorization of this type of wastewater. Nevertheless, few works have been focused on the anaerobic digestion of compost leachate. To overcome this dearth, in the present paper an extensive experimental investigation was carried out to develop and analyse the anaerobic treatment of young leachate in completely stirred tank reactors (CSTR). Initially, it was defined a suitable leachate pretreatment to correct its acidic characteristics that is potentially able to inhibit methanogenic biomass activity. The pretreated leachate was fed to the digester over the start-up phase that was completed in about 40 days. During the operational period, the organic load rate (OLR) changed between 4.25 kgCOD/m3d and 38.5 kgCOD/m3d. The chemical oxygen demand (COD) abatement was higher than 90% for OLR values up to 14.5 kgCOD/m3d and around to 80% for applied loads equal to 24.5 kgCOD/m3d. At this OLR, it was reached the maximum daily biogas production of about 9.3 Lbiogas/(Lreactord). The CH4 fraction was between 70%–78% and the methane production yield in the range 0.34–0.38 LCH4/gCODremoved. The deterioration of biogas production started for OLR values that were over the threshold of 24.5 kgCOD/m3d when a volatile fatty acids (VFA) accumulation occurred and the pH dropped below 6.5. The maximum ratio between VFA and alkalinity (ALK) tolerable in the CSTR was identified to be 0.5 gCH3COOH/gCaCO3. Through an economic analysis, it was proven that the digestion of compost leachate could ensure significant economic profits. Furthermore, the produced digestate had characteristics that were compatible for agricultural applications.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5971 ◽  
Author(s):  
Cristian Bernabé Arenas Sevillano ◽  
Marco Chiappero ◽  
Xiomar Gomez ◽  
Silvia Fiore ◽  
E. Judith Martínez

Wine lees have a great potential to obtain clean energy in the form of biogas through anaerobic digestion due to their high organic load. However, wine lees are a complex substrate and may likely give rise to instabilities leading to failure of the biological process. This work analysed the digestion of wine lees using two different approaches. First, electro-oxidation was applied as pre-treatment using boron-doped diamond-based electrodes. The voltage was 25 V and different treatment times were tested (ranging from 0.08 to 1.5 h) at 25 °C. Anaerobic digestion of wine lees was evaluated in batch tests to investigate the effect of electro-oxidation on biogas yield. Electro-oxidation exhibited a significant positive effect on biogas production increasing its value up to 330 L kg−1 of volatile solids after 1.5 h of treatment, compared to 180 L kg−1 of volatile solids measured from raw wine lees. As a second approach, the addition of biochar to the anaerobic digestion of wine lees was investigated; in the experimental conditions considered in the present study, the addition of biochar did not show any positive effect on anaerobic digestion performance.


2014 ◽  
Vol 40 (4) ◽  
pp. 17-29 ◽  
Author(s):  
Tomasz Pokój ◽  
Zygmunt M. Gusiatin ◽  
Katarzyna Bułkowska ◽  
Bogdan Dubis

Abstract The aim of this study was to investigate the influence of residual glycerine (5 and 10% w/w) from the biodiesel industry, used as a co-substrate, on biogas production from maize silage. The experiments were conducted in a laboratory-scale, single-stage anaerobic digester at 39ºC and hydraulic retention time (HRT) of 60 d. Addition of 5% residual glycerine caused organic load rate (OLR) to increase to 1.82 compared with 1.31 g organic dry matter (ODM) L-1d-1 for maize silage alone. The specific biogas production rate and biogas yield were 1.34 L L-1d-1 and 0.71 L g ODM-1 respectively, i.e. 86% and 30% higher than for maize alone. Increasing the residual glycerine content to 10% increased OLR (2.01 g ODM L-1d-1), but clearly decreased the specific biogas production rate and biogas yield to 0.50 L L-1d-1 and 0.13 L g ODM-1 respectively. This suggested that 10% glycerine content inhibited methanogenic bacteria and organics conversion into biogas. As a result, there was accumulation of propionic and valeric acids throughout the experiment.


2020 ◽  
Vol 171 ◽  
pp. 01015
Author(s):  
Joanna Szyszlak-Bargłowicz ◽  
Grzegorz Zając ◽  
Małgorzata Hawrot-Paw ◽  
Adam Koniuszy

The purpose of the research was to assess the quality of wood pellets available on the market. This assessment was made on the basis of the technical analysis and elemental composition: C, H, N, S. 14 different types of wood pellets available on the market were tested, each of them came from a different producer. In addition, an attempt was made to assess the content of organic matter in the tested pellets on the basis of methane fermentation. The innovation in the presented work is the use of biomethane production potential assessment for pellet fuel, which until now has been practised only in the case of substrates for biogas production. The parameters characterizing the tested pellets in energy terms did not differ significantly. The high calorific value and low ash and sulfur content indicated that the output biomass was of good quality. The differences in the production potential of biomethane of the tested pellets do not allow to state unequivocally that methane fermentation can be used to assess the quality of pellets and their contents of organic matter. However, the large BMP differences obtained for individual pellets suggest that some pellets may contain impurities inhibiting the methane fermentation process.


2021 ◽  
Vol 1 (10 (109)) ◽  
pp. 6-13
Author(s):  
Prayitno Prayitno ◽  
Sri Rulianah ◽  
Windi Zamrudy ◽  
Sugeng Hadi Susilo

The cassava starch wastewater contains organic materials (as BOD, COD) in high concentrations so it has the potential to cause pollution in the aquatic environment. Several methods of cassava starch wastewater treatment have been used to reduce the concentration of organic matter (pollutants) in cassava starch wastewater, including Activated Sludge, Stabilization Pond, Anaerobic-Aerobic filter process. However, various studies continue to be carried out to get higher processing efficiency on the factors that influence it. Several factors influence the efficiency of wastewater treatment processes, including the type and origin of decomposing microorganisms, hydraulic residence time (HRT), organic load rate (OLR), process design, pH, and temperature. The research aimed to evaluate the performance of the AnF2B reactor in treating cassava starch wastewater, in which the reactor performance is shown by changes in organic matter removal (COD removal) and biogas production. The research is conducted using 3 types of AnF2B reactors wherein each AnF2B reactor contains a bee nest-shaped bio-filter as a growth medium for the consortium of indigenous bacteria. The AnF2B reactor operates in anaerobic conditions with a set temperature of 29–30 °C and a pH of 4.5–7. In each AnF2B reactor, cassava starch wastewater is fed with different OLR so that each reactor has an HRT of 5, 6, and 7 days. The concentration of COD at the influent and effluent of the reactor was measured and the biogas was produced using the APHA standard method. The results showed that the AnF2B reactor had a satisfactory performance in COD removal and biogas production, which at HRT: 6 days and OLR of 1.72 g/L·day found that the maximum COD removal was 98 % and the volume of biogas of 4.8 L/L·day was produced on the 12th day


Sign in / Sign up

Export Citation Format

Share Document