scholarly journals Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1308
Author(s):  
Felipe Sanchez Bragagnolo ◽  
Cristiano Soleo Funari ◽  
Elena Ibáñez ◽  
Alejandro Cifuentes

The valorization of agri-food by-products is essential from both economic and sustainability perspectives. The large quantity of such materials causes problems for the environment; however, they can also generate new valuable ingredients and products which promote beneficial effects on human health. It is estimated that soybean production, the major oilseed crop worldwide, will leave about 597 million metric tons of branches, leaves, pods, and roots on the ground post-harvesting in 2020/21. An alternative for the use of soy-related by-products arises from the several bioactive compounds found in this plant. Metabolomics studies have already identified isoflavonoids, saponins, and organic and fatty acids, among other metabolites, in all soy organs. The present review aims to show the application of metabolomics for identifying high-added-value compounds in underused parts of the soy plant, listing the main bioactive metabolites identified up to now, as well as the factors affecting their production.

Author(s):  
María Ángeles Rivas ◽  
Rocío Casquete ◽  
Alberto Martín ◽  
María de Guía Córdoba ◽  
Emilio Aranda ◽  
...  

Nowadays, there is a growing interest in the extraction and identification of new high added-value compounds from the agro-food industry that will valorize the great amount of by-products generated. Many of these bioactive compounds have shown beneficial effects for humans in terms of disease prevention, but they are also of great interest in the food industry due to their effect of extending the shelf life of foods by their well-known antioxidant and antimicrobial activity. For this reason, an additional research objective is to establish the best conditions for obtaining these compounds from complex by-product structures without altering their activity or even increasing it. This review highlights recent work on the identification and characterization of bioactive compounds from vegetable by-products, their functional activity, new methodologies for the extraction of bioactive compounds from vegetables, possibly increasing their biological activity, and the future of the global functional food and nutraceuticals market.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 9
Author(s):  
Franklin Chamorro ◽  
María Carpena ◽  
Bernabé Nuñez-Estevez ◽  
Miguel A. Prieto ◽  
Jesus Simal-Gandara

Currently, agricultural production generates large amounts of organic waste, both from the maintenance of farms and crops, and from the industrialization of the product. Generally, these wastes are accumulated in landfills or burned, sometimes causing environmental problems. However, many scientific studies suggest that these residues are rich in bioactive compounds, so these matrices could be revalued for their use in food, cosmetic, or pharmaceutical industries. In this way, the circular and sustainable economy is favored, while obtaining products with high added value. In this case, this approach is applied to the residues generated from kiwi production, since numerous studies have shown the high content of kiwi in bioactive compounds of interest, such as phenolic compounds, vitamins, and carotenoids. These compounds have been reported for their antioxidant, anti-inflammatory, and antimicrobial activities, among other beneficial properties for health such as its use as prebiotic. Therefore, this article reviews the potential of residues derived from industrial processing and agricultural maintenance of kiwi as promising matrices for the development of new nutraceutical, cosmetic, or pharmacological products, obtaining, at the same time, economic returns and a reduction of the environmental impact of this industry, attaching it to the perspective of the circular economy.


Animals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 131 ◽  
Author(s):  
Fabio Correddu ◽  
Mondina Francesca Lunesu ◽  
Giovanna Buffa ◽  
Alberto Stanislao Atzori ◽  
Anna Nudda ◽  
...  

Recently, the interest in industrial by-products produced at the local level in Mediterranean areas, resulting from fruit and vegetable processes, has increased because of their considerable amounts of bioactive compounds, including polyphenols. In this review, we analyze the most recent scientific results concerning the use of agro-industrial by-products, naturally rich in polyphenols (BPRP), in the diets of small dairy ruminants. Effects on milk production, milk and rumen liquor fatty acid profile, metabolic parameters, and methane production are reviewed. The feed intake and digestibility coefficients were generally depressed by BPRP, even though they were not always reflected in the milk yield. The main observed positive effects of BPRP were on quality of the milk’s FA profile, antioxidant activity in milk and blood, a reduction of rumen ammonia, and, consequently, a reduction of milk and blood urea. The expected beneficial effects of dietary polyphenols in small ruminants were not always observed because of their complex and variable matrices. However, owing to the large quantities of these products available at low prices, the use of BPRB in small ruminant nutrition offers a convenient solution to the valorization of residues arising from agricultural activities, reducing feed costs for farmers and conferring added value to dairy products at the local level, in a sustainable way.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2672 ◽  
Author(s):  
Filipa Antunes ◽  
Sara Marçal ◽  
Oludemi Taofiq ◽  
Alcina M. M. B. Morais ◽  
Ana Cristina Freitas ◽  
...  

Nowadays, the food sector is highly concerned with environmental issues and foreseen to develop strategies to reduce waste and losses resulting from activities developed in the food system. An approach is to increment added value to the agro-industrial wastes, which might provide economic growth and environmental protection, contributing to a circular economy. Mushroom by-products represent a disposal problem, but they are also promising sources of important compounds, which may be used due to their functional and nutritional properties. Research has been developed in different fields to obtain value added solutions for the by-products generated during mushroom production and processing. Bioactive compounds have been obtained and applied in the development of nutraceutical and pharmaceutical formulations. Additionally, other applications have been explored and include animal feed, fertilizer, bioremediation, energy production, bio-based materials, cosmetics and cosmeceuticals. The main purpose of this review is to highlight the relevant composition of mushroom by-products and discuss their potential as a source of functional compounds and other applications. Future research needs to explore pilot and industrial scale extraction methods to understand the technological feasibility and the economic sustainability of the bioactive compounds extraction and valorization towards different applications.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 622
Author(s):  
Gabriella Caruso ◽  
Rosanna Floris ◽  
Claudio Serangeli ◽  
Luisa Di Paola

The search for new biological sources of commercial value is a major goal for the sustainable management of natural resources. The huge amount of fishery by-catch or processing by-products continuously produced needs to be managed to avoid environmental problems and keep resource sustainability. Fishery by-products can represent an interesting source of high added value bioactive compounds, such as proteins, carbohydrates, collagen, polyunsaturated fatty acids, chitin, polyphenolic constituents, carotenoids, vitamins, alkaloids, tocopherols, tocotrienols, toxins; nevertheless, their biotechnological potential is still largely underutilized. Depending on their structural and functional characteristics, marine-derived biomolecules can find several applications in food industry, agriculture, biotechnological (chemical, industrial or environmental) fields. Fish internal organs are a rich and underexplored source of bioactive compounds; the fish gut microbiota biosynthesizes essential or short-chain fatty acids, vitamins, minerals or enzymes and is also a source of probiotic candidates, in turn producing bioactive compounds with antibiotic and biosurfactant/bioemulsifier activities. Chemical, enzymatic and/or microbial processing of fishery by-catch or processing by-products allows the production of different valuable bioactive compounds; to date, however, the lack of cost-effective extraction strategies so far has prevented their exploitation on a large scale. Standardization and optimization of extraction procedures are urgently required, as processing conditions can affect the qualitative and quantitative properties of these biomolecules. Valorization routes for such raw materials can provide a great additional value for companies involved in the field of bioprospecting. The present review aims at collecting current knowledge on fishery by-catch or by-products, exploring the valorization of their active biomolecules, in application of the circular economy paradigm applied to the fishery field. It will address specific issues from a biorefinery perspective: (i) fish tissues and organs as potential sources of metabolites, antibiotics and probiotics; (ii) screening for bioactive compounds; (iii) extraction processes and innovative technologies for purification and chemical characterization; (iv) energy production technologies for the exhausted biomass. We provide a general perspective on the techno-economic feasibility and the environmental footprint of the production process, as well as on the definition of legal constraints for the new products production and commercial use.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2931 ◽  
Author(s):  
Pedro Ferreira-Santos ◽  
Elisa Zanuso ◽  
Zlatina Genisheva ◽  
Cristina M. R. Rocha ◽  
José A. Teixeira

In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers’ attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species. The present review is about the reutilization of residues and by-products from the pine species, using ecofriendly technologies to obtain added-value bioactive compounds for industrial applications.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 37
Author(s):  
Biswajita Pradhan ◽  
Rabindra Nayak ◽  
Srimanta Patra ◽  
Bimal Prasad Jit ◽  
Andrea Ragusa ◽  
...  

In addition to cancer and diabetes, inflammatory and ROS-related diseases represent one of the major health problems worldwide. Currently, several synthetic drugs are used to reduce oxidative stress; nevertheless, these approaches often have side effects. Therefore, to overcome these issues, the search for alternative therapies has gained importance in recent times. Natural bioactive compounds have represented, and they still do, an important source of drugs with high therapeutic efficacy. In the “synthetic” era, terrestrial and aquatic photosynthetic organisms have been shown to be an essential source of natural compounds, some of which might play a leading role in pharmaceutical drug development. Marine organisms constitute nearly half of the worldwide biodiversity. In the marine environment, algae, seaweeds, and seagrasses are the first reported sources of marine natural products for discovering novel pharmacophores. The algal bioactive compounds are a potential source of novel antioxidant and anticancer (through modulation of the cell cycle, metastasis, and apoptosis) compounds. Secondary metabolites in marine Algae, such as phenolic acids, flavonoids, and tannins, could have great therapeutic implications against several diseases. In this context, this review focuses on the diversity of functional compounds extracted from algae and their potential beneficial effects in fighting cancer, diabetes, and inflammatory diseases.


2008 ◽  
Vol 14 (6) ◽  
pp. 497-502 ◽  
Author(s):  
Z. Khiari ◽  
D.P. Makris ◽  
P. Kefalas

Food processing by-products and wastes represent in many instances major polluting agents, since they bear a significant load of organic bio-molecules and particularly high chemical and biological oxygen demand (COD and BOD) levels. In this regard the development of processes that will aim at reducing the polluting load by removing added-value phytochemicals from agriculture-food wastes becomes imminent. In the present study, a first approach regarding the efficient recovery of bioactive flavonols from onion solid wastes has been attempted. Major flavonols were identified by liquid chromatography-mass spectrometry techniques and recovery was achieved by using environmentally friendly and food-compatible solvent systems, composed of water/ethanol, and acidified with either acetic or citric acid and HCl. Initial screening of various mixtures showed that significantly higher recoveries (P<0.001) can be attained by using 60% ethanol containing 0.1% HCl. The assessment of factors affecting yield, including extraction time and temperature, was accomplished using a series of extractions on the basis of a 3 × 3 factorial design model. The results obtained showed that maximization of yield is dependent upon increasing both extraction time and temperature.


Author(s):  
Jose-Aníbal Mora-Villalobos ◽  
Francisco Aguilar ◽  
Ana-Francis Carballo-Arce ◽  
José-Roberto Vega-Baudrit ◽  
Humberto Trimino-Vazquez ◽  
...  

AbstractTropical crops are an important source of wealth in many countries. The current agribusiness model is based on the production of a final commodity, leading to the production of organic by-products (biowastes) that in many cases contain bioactive compounds with a potential added value. The exploitation of these by-products is the foundation of the circular economy that leads to the generation of greener bioprocesses for the industry with foreseeable economic improvements in production systems. This review aims to point out the idle opportunities of agricultural production systems and their associated biowastes to contribute to the establishment of a bioeconomy. Hence, the focus lies on five tropical extensive crops: coffee, oil palm, sugar cane, banana, and pineapple. This first part of the review explores agricultural wastes originated from the coffee and oil palm industrial process and is oriented on the potential use of these by-products as a starting material for the alternative obtention of chemicals, otherwise obtained from petrochemistry. The second part of the review focuses on prospective use of lignocellulosic rich biowaste that is derived from the industrialization of sugar cane, banana, and pineapple. A fundamental difference for the use of coffee biomass compared to other crops is the presence of numerous bioactive compounds that are not yet properly utilized, such as antioxidants (i.e., caffeic acid, chlorogenic acid, ferulic acid), as well as their possible use in the manufacture of products of interest in the cosmetic (i.e., quinic acid) or pharmaceutical industry (i.e., caffeic acid phenethyl ester). In the case of oil palm, its potential lies in obtaining chemicals such as glycerol and carotenoids, or in the bioenergy production.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 106
Author(s):  
Francisco J. Martí-Quijal ◽  
Sucheta Khubber ◽  
Fabienne Remize ◽  
Igor Tomasevic ◽  
Elena Roselló-Soto ◽  
...  

Industrial food waste has potential for generating income from high-added-value compounds through fermentation. Solid-state fermentation is promising to obtain a high yield of bioactive compounds while requiring less water for the microorganism’s growth. A number of scientific studies evinced an increase in flavonoids or phenolics from fruit or vegetable waste and bioactive peptides from cereal processing residues and whey, a major waste of the dairy industry. Livestock, fish, or shellfish processing by-products (skin, viscera, fish scales, seabass colon, shrimp waste) also has the possibility of generating antioxidant peptides, hydrolysates, or compounds through fermentation. These bioactive compounds (phenolics, flavonoids, or antioxidant peptides) resulting from bacterial or fungal fermentation are also capable of inhibiting the growth of commonly occurring food spoilage fungi and can be used as natural preservatives. Despite the significant release or enhancement of antioxidant compounds through by-products fermentation, the surface areas of large-scale bioreactors and flow patterns act as constraints in designing a scale-up process for improved efficiency. An in-process purification method can also be the most significant contributing factor for raising the overall cost. Therefore, future research in modelling scale-up design can contribute towards mitigating the discard of high-added-value generating residues. Therefore, in this review, the current knowledge on the use of fermentation to obtain bioactive compounds from food by-products, emphasizing their use as natural preservatives, was evaluated.


Sign in / Sign up

Export Citation Format

Share Document