scholarly journals Effects of Proteolytic and Lipolytic Enzyme Supplementations on Lipolysis and Proteolysis Characteristics of White Cheeses

Foods ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 125 ◽  
Author(s):  
Oya Berkay Karaca ◽  
Mehmet Güven

Effects of proteolytic (Neutrase, Bacillus subtilis-originate, 0.20 (P1) and 0.40 g 100 L−1 (P2)) and lipolytic (Piccantase A, Mucor miehei-originated, 0.05 (L1) and 0.10 g 100 L−1 (L2)) enzyme supplementations to cheese milk on lipolysis and proteolysis characteristics of 90-day ripened cheese samples were investigated in this study. While enzyme supplementation did not have significant effects on titratable acidity, fat and protease-peptone nitrogen ratios of cheese samples, dry matter, salt, protein, water soluble nitrogen, 12% trichloroacetic acid soluble nitrogen ratio (TCA-SN), 5% phosphotungstic acid soluble nitrogen (PTA-SN), casein nitrogen ratios, penetrometer value, total free fatty acids (TFFA) and total free amino acids (TFAA) were significantly influenced by enzyme supplementations. Individual free amino acids (15 of them) were also determined. Free amino acid contents of enzyme-supplemented cheeses were higher than the control cheese and the values increased in all cheese samples with the progress of ripening (p < 0.05). The highest amino acids in all periods of ripening were identified as glutamic acid, lysine, proline and aspartic acid. The major (Ca, P, Na, K, Mg) and minor (Zn, Fe, Cu, Mn) mineral levels of cheeses decreased with the progress of ripening and the effects of enzyme supplementations on these attributes (except for magnesium and manganese) were found to be significant (p < 0.01). As to conclude, enzyme supplementations increased proteolysis and lipolysis and accelerated ripening and thus reduced ripening durations. Especially the enzyme ratios in P1 and L1 cheeses were found to be suitable for reducing the ripening period in White cheese without any adverse effects.

2019 ◽  
Vol 3 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Mara Georgescu ◽  
Ștefania Mariana Raita ◽  
Dana Tăpăloagă

AbstractVarious antimicrobial solutions have been tested as additives for raw milk traditional cheeses, among whichNigella sativacold pressed seed oil (NSSO) is recognized for its positive effect on the microbial quality of such products. The overall effect on the quality of enriched cheeses during ripening is still under extensive investigation. Three batches of traditional raw milk brined cheese were included in the current experiment: control cheese withoutNigella sativaseed oil (NSSO) and cheese samples enriched with 0.2 and 1% w/w NSSO. Experimental cheese samples were analyzed in duplicates for total nitrogen content (TN), at 0, 14, 28 and 42 days of ripening, while single determinations of total nitrogen (WSN) and free amino acids (FAA) were performed at 14, 28 and 42 ripening days. The TN content revealed similar values for control cheeses and NSSO cheeses, and no significant differences were noticed within the three treatment groups (p >.05) throughout ripening. WSN values followed a significant rising shift in all cheeses during ripening, yet computing data obtained for the three considered treatments, despite an obvious higher WSN content of NSSO enriched cheeses, no statistical significance could be associated to this difference. The FAA composition of the experimental cheeses, varied quantitatively, by increasing with ripening time, but no qualitative variation was noticed during the follow-up period. The FAA composition of the did not vary significantly within treatments.


2004 ◽  
Vol 67 (12) ◽  
pp. 2779-2785 ◽  
Author(s):  
OLIVIA PINHO ◽  
ANA I. E. PINTADO ◽  
ANA M. P. GOMES ◽  
M. MANUELA E. PINTADO ◽  
F. XAVIER MALCATA ◽  
...  

Changes in the microbiological, physicochemical, and biochemical characteristics of Terrincho cheese as represented by native microflora, pH, water activity, soluble nitrogen fractions, free amino acids, and biogenic amines (e.g., ethylamine, dimethylamine, tryptamine, phenylethylamine, putrescine, cadaverine, histamine, tyramine, cystamine, and spermine) during ripening were monitored. Terrincho is a traditional Portuguese cheese manufactured from raw ewe's milk. The main groups of microorganisms (lactococci, lactobacilli, enterococci, pseudomonads, staphylococci, coliforms, yeasts, and molds) were determined following conventional microbiological procedures. Free amino acids and biogenic amines were determined by reverse-phase high-performance liquid chromatography, following extraction from the cheese matrix and derivatization with dabsyl chloride. The total content of free amino acids ranged from 1,730 mg/kg of dry matter at the beginning of the ripening stage to 5,180 mg/kg of dry matter by day 60 of ripening; such an increase was highly correlated with the increase of water-soluble nitrogen in total nitrogen, 12% trichloroacetic acid–soluble nitrogen in total nitrogen, and 5% phosphotungstic acid–soluble nitrogen in total nitrogen throughout ripening. Histamine was consistently present at very low levels, whereas putrescine, cadaverine, and tryptamine were the dominant biogenic amines and increased in concentration during ripening. Ethylamine, tryptamine, phenylethylamine, and cystamine reached maxima by 30 days of ripening and decreased thereafter. Significant correlations between amino acid precursors and corresponding biogenic amines, as well as between biogenic amines and microbial viable numbers, were observed.


2005 ◽  
Vol 72 (2) ◽  
pp. 234-242 ◽  
Author(s):  
Mutlag M Al-Otaibi ◽  
R Andrew Wilbey

This study demonstrated that both chymosin and salt-in-moisture (SM) were important factors for proteolysis in the manufacture of ultrafiltrated white-salted cheese, with significant effects on water-soluble nitrogen and nitrogen soluble in trichloroacetic acid. In contrast, the levels of free amino acids were not significantly affected by chymosin and salt treatments. The cheeses made using high levels of chymosin with low SM had lower levels of residual αs1- and β-casein at the end of ripening. On texture profile analysis, the hardness and fracturability of the cheeses significantly increased with SM and decreased during ripening. Increases in chymosin significantly contributed to the overall weakening of the structure throughout ripening. Bitter flavour was detected after 12 weeks in the cheese made with the higher chymosin level and lower SM, which could be the result of accumulation of γ-casein fractions. The sensory data indicated that the hedonic responses for low chymosin with low SM cheeses were good and acceptable in flavour, which may be due to the moderate levels of proteolysis products.


1996 ◽  
Vol 2 (5) ◽  
pp. 335-339 ◽  
Author(s):  
F.C. Ibáñez ◽  
A.I. Ordóñez ◽  
M.S. Vicente ◽  
M.I. Torres ◽  
Y. Barcina

Idiazábal cheeses were made employing brining times of 12 h (batch A) and 36 h (batch B). Proteolytic changes in both batches were examined over 270 d of ripening; proteolysis was low in both batches, but lower in batch B than in batch A. Electrophoretic analysis revealed incom plete breakdown of αs and β-caseins at the end of the ripening period, particularly in batch B. The proportion of soluble nitrogen as a percentage of total nitrogen was 17.55% in batch B and 19.48% in batch A, while the proportion of non-protein nitrogen was 11.78% in batch B and 15.16% in batch A. The proportion of non-protein nitrogen as a percentage of soluble nitrogen was 67.17% in batch B and 77.88% in batch A. The free amino acids, the smallest non-protein nitrogen frac tion, attained values of 1203 mg/100 g of dry matter in batch B and 1902 mg/100 g of dry matter in batch A. After 60 d of ripening, the main free amino acids were glutamic acid, valine, leucine, lysine, and phenylalanine in both batches, although levels were higher in the batch with the shorter brining time. There was no clear trend in the non-protein-forming amino acids with either ripening time or brining time.


1957 ◽  
Vol 89 (10) ◽  
pp. 457-464 ◽  
Author(s):  
J. L. Auclair ◽  
J. B. Maltais ◽  
J. J. Cartier

In field investigations on the relative resistance of varieties of peas, Pisum sativum L., to the pea aphid, Acyrthosiphon pisum (Harr.), the average number of aphids per terminal growth for 13 years (Maltais, 1937, 1950, 1951, and unpublished technical report, 1950-54) for six varieties was as follows: Perfection, 39.6; Daisy, 32.6; Lincoln, 35.6; Laurier (H-103), 9.8; Champion of England, 11.8; and Melting Sugar, 16.8. In a preliminary investigation by Auclair and Maltais (1950), 11 free amino acids were detected in pea plant extracts by paper chromatography. From a visual comparison of chromatograms, the variety Perfection appeared to contain a higher concentration of most free amino acids than the variety Laurier. This is a report on the quantitative estimation of the free and total amino acid contents of the three susceptible varieties (Perfection, Daisy, and Lincoln) and the three resistant varieties (Laurier, Champion of England, and Melting Sugar) by the method of paper chromatography.


1993 ◽  
Vol 23 (4) ◽  
pp. 665-672 ◽  
Author(s):  
Christoph S. Vogel ◽  
Jeffrey O. Dawson

Changes in tissue nitrogen, phosphorus, and foliar free amino acids of four temperate woody deciduous plants (autumn olive (Elaeagnusumbellata Thunb.), black locust (Robiniapseudoacacia L.), American sycamore (Platanusoccidentalis L.), and honey locust (Gleditsiatriacanthos L.)) were determined during the autumns of 1987 and 1988 on two physically and nutritionally distinct sites in central Illinois, United States. The dinitrogen-fixing species, actinorhizal autumn olive (Frankia nodulated) and leguminous black locust (Rhizobium nodulated), resorbed a greater proportion of phosphorus than nitrogen from leaves prior to autumnal leaf abscission in comparison with the nonfixing American sycamore and honey locust. The net autumnal changes in nitrogen or phosphorus of each species did not differ with site in most cases. Free amino acid contents of leaves tended to decline as leaves senesced during the drier autumn of 1987; however, during the autumn of 1988 foliar free amino acid contents tended to increase as the season progressed, with abscised leaves having the greatest contents. Root bark seemed to be a major sink for phosphorus during autumn in the dinitrogen-fixing species, while all of the species investigated showed significant autumnal increases in twig-bark concentrations of nitrogen.


2018 ◽  
Vol 10 (4) ◽  
pp. 1094-1100
Author(s):  
Kanchna Devi ◽  
Sunita Kapila ◽  
Anju Rao

Thalli of three species of Plagiochasma, collected during different seasons from their natural habitats of Mandi region of Himachal Pradesh were evaluated for some biochemical parameters viz. total water soluble carbohydrates, proteins, free amino acids, total chlorophyll, carotenoid and the activities of amylases, invertase and protease. Highly significantly contents of carbohydrates (70.83±2.54 mg/g fw in P. appendiculatum, 21.26± 0.09 mg/g fw in P. articulatum and 52.75±2.95 mg/g fw in P. intermedium)  and of chlorophyll (0.76±0.005 mg/g fw in P. appendiculatum,  0.69±0.005 mg/g fw in P. articulatum and 1.2±0.006 mg/g fw in P. intermedium ) were observed towards the end of the growing season (January-March period of collection), whereas the content of protein (23.46±0.14 mg/g fw in P. appendiculatum, 23.33±0.71 mg/g fw in P. articulatum and 22.99±0.27 mg/g fw in P. intermedium)  was maximum during winter (October-December) and that of free amino acids (37.48±1.05 mg/g fw in P. appendiculatum, 70.9±0.91 mg/g fw in P. articulatum and 25.13±0.31 mg/g fw in P. intermedium)  in the rainy season (July-September). On the other hand, the activities of enzymes that breakdown the carbohydrates into simple sugars were recorded least towards the end of the favourable period of their growth. The activity of protease was maximum in the rainy season (July-September) and minimum in the winter season (October-December). This study concluded that the seasonal changes in Plagiochasma induced alterations in the biochemical compounds and in the activities of related enzymes that may be responsible for the adaptation of these plants in their natural habitats. 


1992 ◽  
Vol 59 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Baukje Folkertsma ◽  
Patrick F. Fox

SummaryA new method for monitoring the terminal stages of proteolysis in cheese, i.e. the formation of free amino acids, using the Cd-ninhydrin reagent is reported. The assay was very specific for free amino acids and may be performed on citrate-soluble, water-soluble or phosphotungstic acid-soluble fractions of cheese, but not on trichloroacetic acid-soluble extracts; water-soluble extracts were chosen for routine analysis. Application of the assay to several experimental cheeses showed almost linear increases in free amino acids during ripening for up to 12 months with a slightly faster rate of formation during the later stages of ripening.


Sign in / Sign up

Export Citation Format

Share Document