Abstract
The influence of pattern geometry on assisted oil recovery for a particular displacement mechanism is the object of investigation in this paper. The displacement is assumed to be of unit mobility ratio and piston-like. Fluids are assumed incompressible and gravity and capillary effects are neglected. With these assumptions it is possible to calculate by analytical methods the quantities of interest to the reservoir engineer for a great variety of patterns. Specifically, this paper presentsvery briefly, the methods and mathematical derivations required to obtain the results of engineering concern, andtypical results in the form of graphs or formulae that can be used readily without prior study of the methods.
Results of this work provide checks for solutions obtained from programmed numerical techniques. They also reveal the effect of pattern geometry and, even though the assumptions of piston-like displacement and of unit mobility ratio are restrictive, they can nevertheless be used for rather crude but quick, cheap estimates. These estimates can be refined to account for non-unit mobility ratio and two-phase flow by correlating analytical results in the case M=1 and the numerical results for non-Piston, non-unit mobility ratio displacements.
In an earlier paper1 it was also shown that from the knowledge of closed form solutions for unit mobility ratio, quantities called "scale factors" could be readily calculated, increasing considerably the flexibility of the numerical techniques. Many new closed form solutions are given in this paper.
INTRODUCTION
BACKGROUND
Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken.
To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected.
BACKGROUND
Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken.
To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected.