scholarly journals A Stringent Test of Magnetic Models of Stellar Evolution

Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Guillermo Torres ◽  
Gregory A. Feiden ◽  
Andrew Vanderburg ◽  
Jason L. Curtis

Main-sequence stars with convective envelopes often appear larger and cooler than predicted by standard models of stellar evolution for their measured masses. This is believed to be caused by stellar activity. In a recent study, accurate measurements were published for the K-type components of the 1.62-day detached eclipsing binary EPIC 219511354, showing the radii and temperatures for both stars to be affected by these discrepancies. This is a rare example of a system in which the age and chemical composition are known, by virtue of being a member of the well-studied open cluster Ruprecht 147 (age~3 Gyr, [Fe/H] = +0.10). Here, we report a detailed study of this system with nonstandard models incorporating magnetic inhibition of convection. We show that these calculations are able to reproduce the observations largely within their uncertainties, providing robust estimates of the strength of the magnetic fields on both stars: 1600 ± 130 G and 1830 ± 150 G for the primary and secondary, respectively. Empirical estimates of the magnetic field strengths based on the measured X-ray luminosity of the system are roughly consistent with these predictions, supporting this mechanism as a possible explanation for the radius and temperature discrepancies.

1993 ◽  
Vol 137 ◽  
pp. 410-425 ◽  
Author(s):  
A. Noels ◽  
N. Grevesse

AbstractWe present the standard models for small and intermediate main sequence stars and we discuss some of the problems arising with semiconvection and overshooting. The surface abundance of Li serves as a test for other physical mechanisms, including microscopic and turbulent diffusion, rotation and mass loss.


2015 ◽  
Vol 101 ◽  
pp. 01010 ◽  
Author(s):  
Konstanze Zwintz ◽  
Luca Fossati ◽  
Tatiana Ryabchikova ◽  
David Guenther ◽  
Conny Aerts

2004 ◽  
Vol 215 ◽  
pp. 125-126 ◽  
Author(s):  
M. Lamm ◽  
C.A.L. Bailer-Jones ◽  
R. Mundt ◽  
W. Herbst

We present the results of a photometric monitoring program of pre-main sequence (PMS) stars in the young (2-4 Myr) open cluster NGC 2264 (d=700 pc). We find that the rotation periods are mass dependent and show a bimodal distribution for higher mass stars with M ≳ 0.3 M⊙ and a unimodal distribution for lower mass stars with M ≲ 0.3 M⊙.


1988 ◽  
Vol 132 ◽  
pp. 95-98
Author(s):  
J. Bouvier

Until 1980, only a handful of low-mass, active pre-main sequence (pms) stars had known rotation velocities (vsini) /1/. Since then, increasingly sensitive detectors coupled to large telescopes led to high–resolution (a few 104) spectroscopic studies of these faint stars (mv = 10–13), with S/N ratio of the order of 100. The measurement of vsini for large samples of pms stars that resulted brought new insights on various pressing questions related to stellar formation and early stellar evolution : how do the rotation rates of pms stars compare with those expected from models of stellar formation ? how does the stellar angular momentum change during pms evolution ? is pms activity linked with rotation as would be expected if activity were triggered by magnetic processes ?


2008 ◽  
Vol 4 (S252) ◽  
pp. 391-397
Author(s):  
G. Q. Liu ◽  
L. Deng ◽  
M. Chávez ◽  
E. Bertone

AbstractSpectrophotometric observations of the complete sample of twenty four blue stragglers (BSs) in the old galactic open cluster M67 (NGC2682) have been collected, using the Guillermo Haro Observatory in Cananea, Mexico. All the calibrated spectra were re-calibrated by the Beijing Arizona Taipei Connecticut (BATC) photometric system which includes fluxes in 11 photometric bands covering ~3600–10000 Å. The goal of the current work is to provide observational constraints on spectral properties of BSs by determining the effective temperature (Teff) and surface gravity (log g). The overall results, obtained by applying the flux fitting method, indicate that Teff and surface gravities of BSs in M67 are fully compatible with those expected for main sequence stars.


2002 ◽  
Vol 393 (1) ◽  
pp. 195-204 ◽  
Author(s):  
A. Marco ◽  
I. Negueruela

1989 ◽  
Vol 106 ◽  
pp. 228-228
Author(s):  
J. A. Guzik ◽  
T. E. Beach

The surface C/N abundance ratios of many cluster and field G and K giants following the 1st dredge-up phase are much lower than predicted from standard stellar evolution modeling. The occurrence of substantial mass loss, either during or immediately after the main-sequence phase would both reduce the mass fraction of the unprocessed envelope necessary to contaminate with CN-cycle products, as well as allow CN-processing of a greater amount of core material during the earlier high-mass phase. Willson, Bowen and Struck-Marcell (1987) have proposed that a combination of pulsation and rapid rotation could drive substantial mass loss in main-sequence stars of initial mass 1-3 MΘ. We evolved a grid of 16 mass-losing models from the zero-age main sequence through 1st dredge-up. The models have initial masses of 1.25, 1.5, 1.75 and 2.0 MΘ, and exponentially decreasing mass-loss rates with e-folding times 0.2, 0.4, 1.0 and 2.0 Gyr; all models evolve toward a final mass of 1.0 M". Since the mass-loss epoch is short-lived, most of the models reach 1.0 M0 rapidly, and follow the evolutionary track of a standard 1 MΘ model redward away from the main sequence and up the 1st giant branch. The convecuve envelope deepens during 1st dredge-up to homogenize the outer 3/4 of the star's final mass.


2019 ◽  
Vol 491 (2) ◽  
pp. 2129-2136 ◽  
Author(s):  
M de Juan Ovelar ◽  
S Gossage ◽  
S Kamann ◽  
N Bastian ◽  
C Usher ◽  
...  

ABSTRACT We investigate the morphology of the colour–magnitude diagram (CMD) of the open cluster NGC 2509 in comparison with other Galactic open clusters of similar age using Gaia photometry. At ${\sim}900\,\rm {Myr}$ Galactic open clusters in our sample all show an extended main sequence turnoff (eMSTO) with the exception of NGC 2509, which presents an exceptionally narrow CMD. Our analysis of the Gaia data rules out differential extinction, stellar density, and binaries as a cause for the singular MSTO morphology in this cluster. We interpret this feature as a consequence of the stellar rotation distribution within the cluster and present the analysis with mesa Isochrones and Stellar Tracks (MIST) stellar evolution models that include the effect of stellar rotation on which we based our conclusion. In particular, these models point to an unusually narrow range of stellar rotation rates (Ω/Ωcrit, ZAMS = [0.4, 0.6]) within the cluster as the cause of this singular feature in the CMD of NGC 2509. Interestingly, models that do not include rotation are not as good at reproducing the morphology of the observed CMD in this cluster.


1977 ◽  
Vol 4 (2) ◽  
pp. 119-135
Author(s):  
B. E. J. Pagel

Abundance peculiarities in successive stages of stellar evolution are reviewed. Main-sequence stars show anomalies in lithium and, on the upper main sequence, the Am, Ap and Bp effects, which may be largely due to separation processes, and helium and CNO anomalies to which nuclear evolution and mixing could have contributed. Red giants of both stellar Populations commonly show more or less extreme variations among the C, N, 0 isotopes, sometimes accompanied by s-process enhancement, due to mixing out in various evolutionary stages. Detailed anomalies expected from galactic evolution are also briefly considered. Novae show strong effects in C, N, 0 and synthesis of heavier elements is displayed by the supernova remnant Cassiopeia A.


1983 ◽  
Vol 102 ◽  
pp. 461-466
Author(s):  
David F. Gray

The strong rotational braking seen in the G5 III stage of evolution may be the key to understanding how stellar dynamos work.We are all familiar with the leisurely spin-down seen in cool main-sequence stars like our Sun. The time scales here are ∼ 109 years and the accepted cause is the loss of high angular momentum mass in the form of stellar winds interacting with the stellar magnetic field. The magnetic field is believed to result from the interaction of envelope convection with the rotation of the star through a dynamo mechanism. Our understanding of how a dynamo actually operates, how that operation depends on the driving forces of rotation and convection, what kind of stochastic and secular time variations are to be expected, remains fragmentary even though many inventive minds have contributed. One reason for slow progress is simply that the Sun is almost the only example of a stellar dynamo we have had. But nature has given us another, much more powerful dynamo in the G5 giants, it just took us a little longer to discover it.


Sign in / Sign up

Export Citation Format

Share Document