scholarly journals A Genome-Wide Association Study Revealed Key SNPs/Genes Associated With Salinity Stress Tolerance In Upland Cotton

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 829 ◽  
Author(s):  
Muhammad Yasir ◽  
Shoupu He ◽  
Gaofei Sun ◽  
Xiaoli Geng ◽  
Zhaoe Pan ◽  
...  

Millions of hectares of land are too saline to produce economically valuable crop yields. Salt tolerance in cotton is an imperative approach for improvement in response to ever-increasing soil salinization. Little is known about the genetic basis of salt tolerance in cotton at the seedling stage. To address this issue, a genome-wide association study (GWAS) was conducted on a core collection of a genetically diverse population of upland cotton (Gossypium hirsutum L.) comprising of 419 accessions, representing various geographic origins, including China, USA, Pakistan, the former Soviet Union, Chad, Australia, Brazil, Mexico, Sudan, and Uganda. Phenotypic evaluation of 7 traits under control (0 mM) and treatment (150 mM) NaCl conditions depicted the presence of broad natural variation in the studied population. The association study was carried out with the efficient mixed-model association eXpedited software package. A total of 17,264 single-nucleotide polymorphisms (SNPs) associated with different salinity stress tolerance related traits were found. Twenty-three candidate SNPs related to salinity stress-related traits were selected. Final key SNPs were selected based on the r2 value with nearby SNPs in a linkage disequilibrium (LD) block. Twenty putative candidate genes surrounding SNPs, A10_95330133 and D10_61258588, associated with leaf relative water content, RWC_150, and leaf fresh weight, FW_150, were identified, respectively. We further validated the expression patterns of twelve candidate genes with qRT-PCR, which revealed different expression levels in salt-tolerant and salt-sensitive genotypes. The results of our GWAS provide useful knowledge about the genetic control of salt tolerance at the seedling stage, which could assist in elucidating the genetic and molecular mechanisms of salinity stress tolerance in cotton plants.

2018 ◽  
Vol 19 (10) ◽  
pp. 3145 ◽  
Author(s):  
Jie Yu ◽  
Weiguo Zhao ◽  
Wei Tong ◽  
Qiang He ◽  
Min-Young Yoon ◽  
...  

Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 759 ◽  
Author(s):  
Caleb Manamik Breria ◽  
Ching-Hsiang Hsieh ◽  
Tsair-Bor Yen ◽  
Jo-Yi Yen ◽  
Thomas J. Noble ◽  
...  

Mungbean (Vigna radiata (L.) R. Wilzeck var. radiata) is a protein-rich short-duration legume that fits well as a rotation crop into major cereal production systems of East and South-East Asia. Salinity stress in arid areas affects mungbean, being more of a glycophyte than cereals. A significant portion of the global arable land is either salt or sodium affected. Thus, studies to understand and improve salt-stress tolerance are imminent. Here, we conducted a genome-wide association study (GWAS) to mine genomic loci underlying salt-stress tolerance during seed germination of mungbean. The World Vegetable Center (WorldVeg) mungbean minicore collection representing the diversity of mungbean germplasm was utilized as the study panel and variation for salt stress tolerance was found in this germplasm collection. The germplasm panel was classed into two agro-climatic groups and showed significant differences in their germination abilities under salt stress. A total of 5288 SNP markers obtained through genotyping-by-sequencing (GBS) were used to mine alleles associated with salt stress tolerance. Associated SNPs were identified on chromosomes 7 and 9. The associated region at chromosome 7 (position 2,696,072 to 2,809,200 bp) contains the gene Vradi07g01630, which was annotated as the ammonium transport protein (AMT). The associated region in chromosome 9 (position 19,390,227 bp to 20,321,817 bp) contained the genes Vradi09g09510 and Vradi09g09600, annotated as OsGrx_S16-glutaredoxin subgroup II and dnaJ domain proteins respectively. These proteins were reported to have functions related to salt-stress tolerance.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1088
Author(s):  
Thao Duc Le ◽  
Floran Gathignol ◽  
Huong Thi Vu ◽  
Khanh Le Nguyen ◽  
Linh Hien Tran ◽  
...  

Rice tolerance to salinity stress involves diverse and complementary mechanisms, such as the regulation of genome expression, activation of specific ion-transport systems to manage excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration into the inner tissues of the plant. These complementary mechanisms can act synergistically to improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at different developmental stages and in different environments. This approach presupposes the identification of salinity tolerance QTLs associated with different mechanisms involved in salinity tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study (GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Shurong Jin ◽  
Shuangjuan Zhang ◽  
Yuhua Liu ◽  
Youwei Jiang ◽  
Yanmei Wang ◽  
...  

Abstract Background Brassica napus L. is one of the most important oil crops in the world. However, climate-change-induced environmental stresses negatively impact on its yield and quality. Cuticular waxes are known to protect plants from various abiotic/biotic stresses. Dissecting the genetic and biochemical basis underlying cuticular waxes is important to breed cultivars with improved stress tolerance. Results Here a genome-wide association study (GWAS) of 192 B. napus cultivars and inbred lines was used to identify single-nucleotide polymorphisms (SNPs) associated with leaf waxes. A total of 202 SNPs was found to be significantly associated with 31 wax traits including total wax coverage and the amounts of wax classes and wax compounds. Next, epidermal peels from leaves of both high-wax load (HW) and low-wax load (LW) lines were isolated and used to analyze transcript profiles of all GWAS-identified genes. Consequently, 147 SNPs were revealed to have differential expressions between HW and LW lines, among which 344 SNP corresponding genes exhibited up-regulated while 448 exhibited down-regulated expressions in LW when compared to those in HW. According to the gene annotation information, some differentially expressed genes were classified into plant acyl lipid metabolism, including fatty acid-related pathways, wax and cutin biosynthesis pathway and wax secretion. Some genes involved in cell wall formation and stress responses have also been identified. Conclusions Combination of GWAS with transcriptomic analysis revealed a number of directly or indirectly wax-related genes and their associated SNPs. These results could provide clues for further validation of SNPs for marker-assisted breeding and provide new insights into the genetic control of wax biosynthesis and improving stress tolerance of B. napus.


Sign in / Sign up

Export Citation Format

Share Document