wax load
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Fátima Carvajal ◽  
Alejandro Castro-Cegrí ◽  
Raquel Jiménez-Muñoz ◽  
Manuel Jamilena ◽  
Dolores Garrido ◽  
...  

Cuticle composition is an important economic trait in agriculture, as it is the first protective barrier of the plant against environmental conditions. The main goal of this work was to study the role of the cuticular wax in maintaining the postharvest quality of zucchini fruit, by comparing two commercial varieties with contrasting behavior against low temperatures; the cold-tolerant variety ‘Natura’, and the cold-sensitive ‘Sinatra’, as well as ‘Sinatra’ fruit with induced-chilling tolerance through a preconditioning treatment (15°C for 48 h). The freshly-harvested ‘Natura’ fruit had a well-detectable cuticle with a significant lower permeability and a subset of 15 up-regulated cuticle-related genes. SEM showed that zucchini epicuticular waxes mainly consisted of round-shaped crystals and clusters of them, and areas with more dense crystal deposition were found in fruit of ‘Natura’ and of preconditioned ‘Sinatra’. The cuticular wax load per surface was higher in ‘Natura’ than in ‘Sinatra’ fruit at harvest and after 14 days at 4°C. In addition, total cuticular wax load only increased in ‘Natura’ and preconditioned ‘Sinatra’ fruit with cold storage. With respect to the chemical composition of the waxes, the most abundant components were alkanes, in both ‘Natura’ and ‘Sinatra’, with similar values at harvest. The total alkane content only increased in ‘Natura’ fruit and in the preconditioned ‘Sinatra’ fruit after cold storage, whereas the amount of total acids decreased, with the lowest values observed in the fruit that showed less chilling injury (CI) and weight loss. Two esters were detected, and their content also decreased with the storage in both varieties, with a greater reduction observed in the cold-tolerant variety in response to low temperature. Gene expression analysis showed significant differences between varieties, especially in CpCER1-like and CpCER3-like genes, involved in alkane production, as well as in the transcription factors CpWIN1-like and CpFUL1-like, associated with cuticle development and epidermal wax accumulation in other species. These results suggest an important role of the alkane biosynthetic pathway and cuticle morphology in maintaining the postharvest quality of zucchini fruit during the storage at low temperatures.


2021 ◽  
Vol 22 (19) ◽  
pp. 10242
Author(s):  
Paco Romero ◽  
María Teresa Lafuente

The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate (Citrus sinensis L. Osbeck), and how this relationship is influenced by water stress after detachment. Harvested ABA-treated fruit were exposed to water stress by storing them at low (30–35%) relative humidity. The total epicuticular wax load rose after fruit detachment, which ABA application decreased earlier and more markedly during fruit-dehydrating storage. ABA treatment changed the abundance of the separated wax fractions and the contents of most individual components, which reveals dependence on the exposure to postharvest water stress and different trends depending on storage duration. A correlation analysis supported these responses, which mostly fitted the expression patterns of the key genes involved in wax biosynthesis and transport. A cluster analysis indicated that storage duration is an important factor for the exogenous ABA influence and the postharvest environment on epicuticular wax composition, cuticle properties and fruit physiology. Dynamic ABA-mediated reconfiguration of wax metabolism is influenced by fruit exposure to water stress conditions.


2021 ◽  
Author(s):  
Boaz Negin ◽  
Lior Shachar ◽  
Sagit Meir ◽  
Claudio C Ramirez ◽  
Abraham Rami Horowitz ◽  
...  

Despite decades of research resulting in a comprehensive understanding of epicuticular wax biosynthesis and metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. To develop a better understanding of this role, we investigated plant-herbivore interactions in four Nicotiana glauca (tree tobacco) genome edited mutants. This included [eceriferum1 (cer1), eceriferum3 (cer3), beta-ketoacyl-coA synthase6 (kcs6), and fatty acyl-coA reductase (far)] displaying a wide range of alkane and fatty alcohol abundances. Three interaction classes were examined: chewing herbivory with seven caterpillar and one snail species, phloem feeding with Myzus persicae (green peach aphid), and egg laying with Bemisia tabaci (sweet potato whitefly). We found that high wax load and alkane abundance did not reduce caterpillar or snail herbivory. However, fatty alcohol content was negatively correlated with caterpillar growth, suggesting a role in reducing insect herbivory despite its lower levels. Aphid reproduction and feeding activity were not correlated with wax load and composition but are potentially affected by altered cutin composition of cer1 mutants. When examining non-feeding activities, wax crystal morphology could explain the preference of B. tabaci to lay eggs on wildtype plants relative to cer1 and far mutants. Accordingly, the fatty alcohol wax component reduces caterpillar herbivory on the chemical level, but oviposition is increased when wax crystals are dense. The results suggest that this varied response between herbivore classes and species, at times displaying increased and at times reduced fitness in response to altered wax composition is in part a consequence of co-evolution that shaped the specific effects of different N. glauca metabolites such as anabasine and fatty alcohols in plant-herbivore interactions.


2021 ◽  
Vol 34 (2) ◽  
pp. 398-409
Author(s):  
IZABELLA MARIA CINTRA RIBEIRO ◽  
EMILIA CRISTINA PEREIRA DE ARRUDA ◽  
ANTONIO FERNANDO MORAIS DE OLIVEIRA ◽  
JARCILENE SILVA DE ALMEIDA

ABSTRACT Cenostigma pyramidale, a pioneer species presents in all different successional stage (early, intermediate and late) of fifteen natural regeneration areas of Caatinga after land used changed and abandonment was used to investigates the morphological and physiological attributes that are very important to xeromorphic conditions as against herbivories. Leaf samples were collected to evaluate the percentage of the herbivory and index of sclerophylly. Anatomy, histochemistry, total phenolic content, epicuticular wax load, and n-alkanes profile were also performed. The results showed an inverse relationship between the percentage of herbivory and the index of sclerophylly. The leaves showed typical morphological and anatomical characteristics of xeric environments plants such as uniseriate epidermis and trichomes. Furthermore, it was also noticed a decrease in the overall thickness and the tissues according to the advancement of the successional stages. The histochemical revealed the presence of lipidic substances coating the epidermal layers, phenolics compounds stored in secretory structures, and starch in the mesophyll. The concentration of phenolics compounds indicating the difference from health leaves of plants between different stages of regeneration, but no difference when they were herbivored. The amount of cuticle wax did not change significantly with the successional stage. The profile of n-alkanes was characterized by the predominance of nonacosane (C29) and hentriacontane (C31). The C29 content decreases with the advancement of the successional stage, while the C31 content increases. All those attributes have a role to protect the plants to acclimate to the various environmental conditions of Caatinga.


2020 ◽  
Vol 180 ◽  
pp. 104206 ◽  
Author(s):  
Chun-Ling Zhang ◽  
Yong-Xu Wang ◽  
Xing Hu ◽  
Ya-Li Zhang ◽  
Gui-Luan Wang ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Shurong Jin ◽  
Shuangjuan Zhang ◽  
Yuhua Liu ◽  
Youwei Jiang ◽  
Yanmei Wang ◽  
...  

Abstract Background Brassica napus L. is one of the most important oil crops in the world. However, climate-change-induced environmental stresses negatively impact on its yield and quality. Cuticular waxes are known to protect plants from various abiotic/biotic stresses. Dissecting the genetic and biochemical basis underlying cuticular waxes is important to breed cultivars with improved stress tolerance. Results Here a genome-wide association study (GWAS) of 192 B. napus cultivars and inbred lines was used to identify single-nucleotide polymorphisms (SNPs) associated with leaf waxes. A total of 202 SNPs was found to be significantly associated with 31 wax traits including total wax coverage and the amounts of wax classes and wax compounds. Next, epidermal peels from leaves of both high-wax load (HW) and low-wax load (LW) lines were isolated and used to analyze transcript profiles of all GWAS-identified genes. Consequently, 147 SNPs were revealed to have differential expressions between HW and LW lines, among which 344 SNP corresponding genes exhibited up-regulated while 448 exhibited down-regulated expressions in LW when compared to those in HW. According to the gene annotation information, some differentially expressed genes were classified into plant acyl lipid metabolism, including fatty acid-related pathways, wax and cutin biosynthesis pathway and wax secretion. Some genes involved in cell wall formation and stress responses have also been identified. Conclusions Combination of GWAS with transcriptomic analysis revealed a number of directly or indirectly wax-related genes and their associated SNPs. These results could provide clues for further validation of SNPs for marker-assisted breeding and provide new insights into the genetic control of wax biosynthesis and improving stress tolerance of B. napus.


2020 ◽  
Vol 54 (5) ◽  
pp. 472-486
Author(s):  
Muhammad Umair Majid ◽  
Zunaira Sher ◽  
Bushra Rashid ◽  
Qurban Ali ◽  
Muhammad Bilal Sarwar ◽  
...  

2020 ◽  
Vol 133 (11) ◽  
pp. 3119-3137 ◽  
Author(s):  
Jennifer Bragg ◽  
Pernell Tomasi ◽  
Li Zhang ◽  
Tina Williams ◽  
Delilah Wood ◽  
...  

2019 ◽  
Vol 70 (12) ◽  
pp. 3089-3099 ◽  
Author(s):  
Li Li ◽  
Yicong Du ◽  
Cheng He ◽  
Charles R Dietrich ◽  
Jiankun Li ◽  
...  

Abstract Cuticular waxes, long-chain hydrocarbon compounds, form the outermost layer of plant surfaces in most terrestrial plants. The presence of cuticular waxes protects plants from water loss and other environmental stresses. Cloning and characterization of genes involved in the regulation, biosynthesis, and extracellular transport of cuticular waxes onto the surface of epidermal cells have revealed the molecular basis of cuticular wax accumulation. However, intracellular trafficking of synthesized waxes to the plasma membrane for cellular secretion is poorly understood. Here, we characterized a maize glossy (gl6) mutant that exhibited decreased epicuticular wax load, increased cuticle permeability, and reduced seedling drought tolerance relative to wild-type. We combined an RNA-sequencing-based mapping approach (BSR-Seq) and chromosome walking to identify the gl6 candidate gene, which was confirmed via the analysis of multiple independent mutant alleles. The gl6 gene represents a novel maize glossy gene containing a conserved, but uncharacterized, DUF538 domain. This study suggests that the GL6 protein may be involved in the intracellular trafficking of cuticular waxes, opening the door to elucidating the poorly understood process by which cuticular wax is transported from its site of biosynthesis to the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document