scholarly journals Molecular Pathways Involved in the Development of Congenital Erythrocytosis

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1150
Author(s):  
Jana Tomc ◽  
Nataša Debeljak

Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.

2019 ◽  
Author(s):  
Kathryn P. Wall ◽  
Harold Hart ◽  
Thomas Lee ◽  
Cynthia Page ◽  
Taviare L. Hawkins ◽  
...  

ABSTRACTMicrotubules are biopolymers that perform diverse cellular functions. The regulation of microtubule behavior occurs in part through post-translational modification of both the α- and β- subunits of tubulin. One class of modifications is the heterogeneous addition of glycine and glutamate residues to the disordered C-terminal tails of tubulin. Due to their prevalence in stable, high stress cellular structures such as cilia, we sought to determine if these modifications alter the intrinsic stiffness of microtubules. Here we describe the purification and characterization of differentially-modified pools of tubulin from Tetrahymena thermophila. We found that glycylation on the α-C-terminal tail is a key determinant of microtubule stiffness, but does not affect the number of protofilaments incorporated into microtubules. We measured the dynamics of the tail peptide backbone using nuclear magnetic resonance spectroscopy. We found that the spin-spin relaxation rate (R2) showed a pronounced decreased as a function of distance from the tubulin surface for the α-tubulin tail, indicating that the α-tubulin tail interacts with the dimer surface. This suggests that the interactions of the α-C-terminal tail with the tubulin body contributes to the stiffness of the assembled microtubule, providing insight into the mechanism by which glycylation and glutamylation can alter microtubule mechanical properties.SIGNIFICANCEMicrotubules are regulated in part by post-translational modifications including the heterogeneous addition of glycine and glutamate residues to the C-terminal tails. By producing and characterizing differentially-modified tubulin, this work provides insight into the molecular mechanisms of how these modifications alter intrinsic microtubule properties such as flexibility. These results have broader implications for mechanisms of how ciliary structures are able to function under high stress.


2020 ◽  
Vol 295 (49) ◽  
pp. 16797-16812
Author(s):  
Carolyn G. Chen ◽  
Renato V. Iozzo

The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 193-199
Author(s):  
Diethard Tautz ◽  
Markus Friedrich ◽  
Reinhard Schröder

The systematic genetic analysis of Drosophila development has provided us with a deep insight into the molecular pathways of early embryogenesis. The question arises now whether these insights can serve as a more general paradigm of early development, or whether they apply only to advanced insect orders. Though it is too early to give a definitive answer to this question, we suggest that there is currently no firm reason to believe that the molecular mechanisms that were elucidated in Drosophila may not also apply to other forms of insect embryogenesis. Thus, many of the Drosophila genes involved in early pattern formation may have comparable functions in other insects and possibly throughout the arthropods.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kevin L. Webb ◽  
Paolo B. Dominelli ◽  
Sarah E. Baker ◽  
Stephen A. Klassen ◽  
Michael J. Joyner ◽  
...  

Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.


2020 ◽  
Vol 21 (7) ◽  
pp. 690-698
Author(s):  
Yogita Jethmalani ◽  
Erin M. Green

The post-translational modifications (PTM) of proteins are crucial for cells to survive under diverse environmental conditions and to respond to stimuli. PTMs are known to govern a broad array of cellular processes including signal transduction and chromatin regulation. The PTM lysine methylation has been extensively studied within the context of chromatin and the epigenetic regulation of the genome. However, it has also emerged as a critical regulator of non-histone proteins important for signal transduction pathways. While the number of known non-histone protein methylation events is increasing, the molecular functions of many of these modifications are not yet known. Proteomic studies of the model system Saccharomyces cerevisiae suggest lysine methylation may regulate a diversity of pathways including transcription, RNA processing, translation, and signal transduction cascades. However, there has still been relatively little investigation of lysine methylation as a broad cellular regulator beyond chromatin and transcription. Here, we outline our current state of understanding of non-histone protein methylation in yeast and propose ways in which the yeast system can be leveraged to develop a much more complete picture of molecular mechanisms through which lysine methylation regulates cellular functions.


2020 ◽  
Vol 27 (2) ◽  
pp. 187-215 ◽  
Author(s):  
Lavinia Raimondi ◽  
Angela De Luca ◽  
Gianluca Giavaresi ◽  
Agnese Barone ◽  
Pierosandro Tagliaferri ◽  
...  

: Chemoprevention is based on the use of non-toxic, pharmacologically active agents to prevent tumor progression. In this regard, natural dietary agents have been described by the most recent literature as promising tools for controlling onset and progression of malignancies. Extensive research has been so far performed to shed light on the effects of natural products on tumor growth and survival, disclosing the most relevant signal transduction pathways targeted by such compounds. Overall, anti-inflammatory, anti-oxidant and cytotoxic effects of dietary agents on tumor cells are supported either by results from epidemiological or animal studies and even by clinical trials. : Multiple myeloma is a hematologic malignancy characterized by abnormal proliferation of bone marrow plasma cells and subsequent hypercalcemia, renal dysfunction, anemia, or bone disease, which remains incurable despite novel emerging therapeutic strategies. Notably, increasing evidence supports the capability of dietary natural compounds to antagonize multiple myeloma growth in preclinical models of the disease, underscoring their potential as candidate anti-cancer agents. : In this review, we aim at summarizing findings on the anti-tumor activity of dietary natural products, focusing on their molecular mechanisms, which include inhibition of oncogenic signal transduction pathways and/or epigenetic modulating effects, along with their potential clinical applications against multiple myeloma and its related bone disease.


Sign in / Sign up

Export Citation Format

Share Document