Abstract
Measurements of gene expression and signal transduction activity are conventionally performed with methods that require either the destruction or live imaging of a biological sample within the timeframe of interest. Here we demonstrate an alternative paradigm, termed ENGRAM (ENhancer-driven Genomic Recording of transcriptional Activity in Multiplex), in which the activity and dynamics of multiple transcriptional reporters are stably recorded to DNA. ENGRAM is based on the prime editing-mediated insertion of signal- or enhancer-specific barcodes to a genomically encoded recording unit. We show how this strategy can be used to concurrently record the relative activity of at least hundreds of enhancers with high fidelity, sensitivity and reproducibility. Leveraging synthetic enhancers that are responsive to specific signal transduction pathways, we further demonstrate time- and concentration-dependent genomic recording of Wnt, NF-κB, and Tet-On activity. Finally, by coupling ENGRAM to sequential genome editing, we show how serially occurring molecular events can potentially be ordered. Looking forward, we envision that multiplex, ENGRAM-based recording of the strength, duration and order of enhancer and signal transduction activities has broad potential for application in functional genomics, developmental biology and neuroscience.