scholarly journals Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1770
Author(s):  
Paul A. Saunders ◽  
Frédéric Veyrunes

Therian mammals have among the oldest and most conserved sex-determining systems known to date. Any deviation from the standard XX/XY mammalian sex chromosome constitution usually leads to sterility or poor fertility, due to the high differentiation and specialization of the X and Y chromosomes. Nevertheless, a handful of rodents harbor so-called unusual sex-determining systems. While in some species, fertile XY females are found, some others have completely lost their Y chromosome. These atypical species have fascinated researchers for over 60 years, and constitute unique natural models for the study of fundamental processes involved in sex determination in mammals and vertebrates. In this article, we review current knowledge of these species, discuss their similarities and differences, and attempt to expose how the study of their exceptional sex-determining systems can further our understanding of general processes involved in sex chromosome and sex determination evolution.

2018 ◽  
Vol 20 (3) ◽  
pp. 180
Author(s):  
Yeti Eka Sispita Sari

AbstractBackground:  Amelogenin gene was a single copy gene located in an X chromosome and a Y chromosome. The location of amelogenin gene for identification of sex chromosome has good variability between the form and the shape of the X chromosome and the Y chromosome and between Amelogenin alleles among different populations. Purpose: To prove urine spot examination on the results of the sex determination through Deoxyribo Nucleid Acid (DNA) isolation using amelogenin and Y chromosome loci (DYS19). Methods: Spotting the microscopic examination of urine samples to determine the presence or absence of urethral epithelial cells, followed by isolation Deoxyribo nucleid Acid (DNA) in order to determine the extent and purity of DNA amplification. Then performed Polymerase Chain Reaction (PCR) amelogenin locus at 106bp - 112bp and Y chromosomes (DYS19) at 232 -268 bp. Results: in 9 samples of men from 3 families with 3 kinship of different regions shows the results of different tests, because Amel Y variation between individual and populations method of determining the sex of 100% was inaccurate. In some men Amel Y can be removed entirely. This research should be visualized one band on the Y chromosome (DYS19) and the Amelogenin two bands during electrophoresis occurs misidentification of the sample as a woman. Conclusions: Identification of sex using Amelogenin locus and Y chromosomes (DYS19) has six identical and ambiguous results because the two samples shown as the sign of men but visualized as women, another sample was not visualized because of the thick level and concentration of Deoxyribo nucleid Acid (DNA).Keywords: Urine Spot, Sex Determination, Amelogenin, Y chromosome (DYS19).


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lingzhan Xue ◽  
Yu Gao ◽  
Meiying Wu ◽  
Tian Tian ◽  
Haiping Fan ◽  
...  

Abstract Background The origin of sex chromosomes requires the establishment of recombination suppression between the proto-sex chromosomes. In many fish species, the sex chromosome pair is homomorphic with a recent origin, providing species for studying how and why recombination suppression evolved in the initial stages of sex chromosome differentiation, but this requires accurate sequence assembly of the X and Y (or Z and W) chromosomes, which may be difficult if they are recently diverged. Results Here we produce a haplotype-resolved genome assembly of zig-zag eel (Mastacembelus armatus), an aquaculture fish, at the chromosomal scale. The diploid assembly is nearly gap-free, and in most chromosomes, we resolve the centromeric and subtelomeric heterochromatic sequences. In particular, the Y chromosome, including its highly repetitive short arm, has zero gaps. Using resequencing data, we identify a ~7 Mb fully sex-linked region (SLR), spanning the sex chromosome centromere and almost entirely embedded in the pericentromeric heterochromatin. The SLRs on the X and Y chromosomes are almost identical in sequence and gene content, but both are repetitive and heterochromatic, consistent with zero or low recombination. We further identify an HMG-domain containing gene HMGN6 in the SLR as a candidate sex-determining gene that is expressed at the onset of testis development. Conclusions Our study supports the idea that preexisting regions of low recombination, such as pericentromeric regions, can give rise to SLR in the absence of structural variations between the proto-sex chromosomes.


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1105-1113 ◽  
Author(s):  
Alicia Felip ◽  
Atushi Fujiwara ◽  
William P Young ◽  
Paul A Wheeler ◽  
Marc Noakes ◽  
...  

Most fish species show little morphological differentiation in the sex chromosomes. We have coupled molecular and cytogenetic analyses to characterize the male-determining region of the rainbow trout (Oncorhynchus mykiss) Y chromosome. Four genetically diverse male clonal lines of this species were used for genetic and physical mapping of regions in the vicinity of the sex locus. Five markers were genetically mapped to the Y chromosome in these male lines, indicating that the sex locus was located on the same linkage group in each of the lines. We also confirmed the presence of a Y chromosome morphological polymorphism among these lines, with the Y chromosomes from two of the lines having the more common heteromorphic Y chromosome and two of the lines having Y chromosomes morphologically similar to the X chromosome. The fluorescence in situ hybridization (FISH) pattern of two probes linked to sex suggested that the sex locus is physically located on the long arm of the Y chromosome. Fishes appear to be an excellent group of organisms for studying sex chromosome evolution and differentiation in vertebrates because they show considerable variability in the mechanisms and (or) patterns involved in sex determination.Key words: sex chromosomes, sex markers, cytogenetics, rainbow trout, fish.


2019 ◽  
Vol 116 (38) ◽  
pp. 19031-19036 ◽  
Author(s):  
Iulia Darolti ◽  
Alison E. Wright ◽  
Benjamin A. Sandkam ◽  
Jake Morris ◽  
Natasha I. Bloch ◽  
...  

Once recombination is halted between the X and Y chromosomes, sex chromosomes begin to differentiate and transition to heteromorphism. While there is a remarkable variation across clades in the degree of sex chromosome divergence, far less is known about the variation in sex chromosome differentiation within clades. Here, we combined whole-genome and transcriptome sequencing data to characterize the structure and conservation of sex chromosome systems across Poeciliidae, the livebearing clade that includes guppies. We found that the Poecilia reticulata XY system is much older than previously thought, being shared not only with its sister species, Poecilia wingei, but also with Poecilia picta, which diverged roughly 20 million years ago. Despite the shared ancestry, we uncovered an extreme heterogeneity across these species in the proportion of the sex chromosome with suppressed recombination, and the degree of Y chromosome decay. The sex chromosomes in P. reticulata and P. wingei are largely homomorphic, with recombination in the former persisting over a substantial fraction. However, the sex chromosomes in P. picta are completely nonrecombining and strikingly heteromorphic. Remarkably, the profound degradation of the ancestral Y chromosome in P. picta is counterbalanced by the evolution of functional chromosome-wide dosage compensation in this species, which has not been previously observed in teleost fish. Our results offer important insight into the initial stages of sex chromosome evolution and dosage compensation.


1996 ◽  
Vol 45 (1-2) ◽  
pp. 137-141 ◽  
Author(s):  
P.E. Polani

In the beginning the dogma was that sex determination in man followed the Drosophila pattern in which XO is male, XXY female, and the Y chromosome has no direct influence on the determination of sex. On the grounds of specific anomalies with which they presented, females with Turner Syndrome were sex chromatin tested and found to be chromatin negative [1]. This result, confirmed in 1956 by the male frequency of red-green colour blindness in these subjects which indicated that they carried only one X chromosome in spite of their female phenotype, suggested that therefore they might be XO, and, so, hinted that sex determination in man might not follow the then accepted pattern [2]. In 1959 chromosome studies confirmed that XOs were female [3] and showed that subjects with the symmetrical XXY sex-chromosome anomaly were with Klinefelter syndrome [4]. In the same year, by showing that XOs were females also in mice [5] it became accepted that the Y chromosome was the determiner of the formation of the testis in the mammalian embryo, and so was the key element in primary sexual differentation. It would seem appropriate to call this formal model of chromosomal sex determination the Malandrium pattern [6].In 1966 Jacobs and Ross [7], from work on males with Y chromosome deletions narrowed down the testis determining function of the Y chromosome to its short arm. Then, in 1975, Wachtel and collaborators [8] were the first to formulate a hypothesis on the sex determining gene, or, more precisely on the nature of its product. They suggested that this developmental role might be played by the H-Y antigen, a weak histocompatibility antigen which had been known to be involved in the rejection of male skin grafted onto otherwise histocompatible female mice. The idea had run into technical difficulties and a major problem was related to the significance that should be attached to the results of two different ways for demonstrating the antigen, namely the cell-mediated cytotoxicity test or the serological test. Efforts were made to keep the H-Y hypothesis alive, largely because there was a certain elegance about it [9, 10]. However eventually XX male mice, lacking H-Y by either test, spelt the end of the candidature of H-Y as the testis determining mechanism [11, 12].


Genome ◽  
1988 ◽  
Vol 30 (6) ◽  
pp. 870-878 ◽  
Author(s):  
Fred G. Biddle ◽  
Yutaka Nishioka

The Y chromosome of Mus musculus poschiavinus interacts with the autosomal recessive gene tda-1b of the C57BL/6J laboratory strain of the house mouse to cause complete or partial sex reversal. Ovaries or ovotestes develop in a substantial proportion of the XY fetuses. Several different Y-specific DNA probes distinguish two major types of Y chromosome in the house mouse and they are represented by M. m. domesticus and M. m. musculus. The poschiavinus Y chromosome appears identical to the domesticus Y. The developmental distribution of the gonad types was examined in the first backcross or N2 generation of fetuses in C57BL/6J with six different domesticus-type Y chromosomes and, as controls, three different musculus-type Y chromosomes. Gonadal hermaphrodites were found with three of the six domesticus-type Y chromosomes. Both overall frequency and phenotypic distribution of types of gonadal hermaphrodites identify three classes of domesticus-type Y chromosome by their differential interaction with the C57BL/6J genetic background.Key words: mouse, Y chromosomes, gonadal hermaphrodites, primary sex determination.


2004 ◽  
Vol 16 (5) ◽  
pp. 527 ◽  
Author(s):  
Jennifer A. Marshall Graves

The human Y chromosome is running out of time. In the last 300 million years, it has lost 1393 of its original 1438 genes, and at this rate it will lose the last 45 in a mere 10 million years. But there has been a proposal that perhaps rescue is at hand in the form of recently discovered gene conversion within palindromes. However, I argue here that although conversion will increase the frequency of variation of the Y (particularly amplification) between Y chromosomes in a population, it will not lead to a drive towards a more functional Y. The forces of evolution have made the Y a genetically isolated, non-recombining entity, vulnerable to genetic drift and selection for favourable new variants sharing the Y with damaging mutations. Perhaps it will even speed up the decline of the Y chromosome and the onset of a new round of sex-chromosome differentiation. The struggle to preserve males may perhaps lead to hominid speciation.


Author(s):  
Jae Hak Son ◽  
Richard P. Meisel

AbstractX and Y chromosomes are usually derived from a pair of homologous autosomes, which then diverge from each other over time. Although Y-specific features have been characterized in sex chromosomes of various ages, the earliest stages of Y chromosome evolution remain elusive. In particular, we do not know whether early stages of Y chromosome evolution consist of changes to individual genes or happen via chromosome-scale divergence from the X. To address this question, we quantified divergence between young proto-X and proto-Y chromosomes in the house fly, Musca domestica. We compared proto-sex chromosome sequence and gene expression between genotypic (XY) and sex-reversed (XX) males. We find evidence for sequence divergence between genes on the proto-X and proto-Y, including five genes with mitochondrial functions. There is also an excess of genes with divergent expression between the proto-X and proto-Y, but the number of genes is small. This suggests that individual proto-Y genes, but not the entire proto-Y chromosome, have diverged from the proto-X. We identified one gene, encoding an axonemal dynein assembly factor (which functions in sperm motility), that has higher expression in XY males than XX males because of a disproportionate contribution of the proto-Y allele to gene expression. The up-regulation of the proto-Y allele may be favored in males because of this gene’s function in spermatogenesis. The evolutionary divergence between proto-X and proto-Y copies of this gene, as well as the mitochondrial genes, is consistent with selection in males affecting the evolution of individual genes during early Y chromosome evolution.


2019 ◽  
Author(s):  
Kimberly C. Olney ◽  
Sarah M. Brotman ◽  
Jocelyn P. Andrews ◽  
Valeria A. Valverde-Vesling ◽  
Melissa A. Wilson

AbstractBackgroundHuman X and Y chromosomes share an evolutionary origin and, as a consequence, sequence similarity. We investigated whether sequence homology between the X and Y chromosomes affects alignment of RNA-Seq reads and estimates of differential expression. We tested the effects of using reference genomes and reference transcriptomes informed by the sex chromosome complement of the sample’s genome on measurements of RNA-Seq abundance and sex differences in expression.ResultsThe default genome includes the entire human reference genome (GRCh38), including the entire sequence of the X and Y chromosomes. We created two sex chromosome complement informed reference genomes. One sex chromosome complement informed reference genome was used for samples that lacked a Y chromosome; for this reference genome version, we hard-masked the entire Y chromosome. For the other sex chromosome complement informed reference genome, to be used for samples with a Y chromosome, we hard-masked only the pseudoautosomal regions of the Y chromosome, because these regions are duplicated identically in the reference genome on the X chromosome. We analyzed transcript abundance in the whole blood, brain cortex, breast, liver, and thyroid tissues from 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. Each sample was aligned twice; once to the default reference genome and then independently aligned to a reference genome informed by the sex chromosome complement of the sample, repeated using two different read aligners, HISAT and STAR. We then quantified sex differences in gene expression using featureCounts to get the raw count estimates followed by Limma/Voom for normalization and differential expression. We additionally created sex chromosome complement informed transcriptome references for use in pseudo-alignment using Salmon. Transcript abundance was quantified twice for each sample; once to the default target transcripts and then independently to target transcripts informed by the sex chromosome complement of the sample.ConclusionsWe show that regardless of the choice of read aligner, using an alignment protocol informed by the sex chromosome complement of the sample results in higher expression estimates on the pseudoautosomal regions of the X chromosome in both genetic male and genetic female samples, as well as an increased number of unique genes being called as differentially expressed between the sexes. We additionally show that using a pseudo-alignment approach informed on the sex chromosome complement of the sample eliminates Y-linked expression in female XX samples.Author summaryThe human X and Y chromosomes share an evolutionary origin and sequence homology, including regions of 100% identity; this sequence homology can result in reads misaligning between the sex chromosomes, X and Y. We hypothesized that misalignment of reads on the sex chromosomes would confound estimates of transcript abundance if the sex chromosome complement of the sample is not accounted for during the alignment step. For example, because of shared sequence similarity, X-linked reads could misalign to the Y chromosome. This is expected to result in reduced expression for regions between X and Y that share high levels of homology. For this reason, we tested the effect of using a default reference genome versus a reference genome informed by the sex chromosome complement of the sample on estimates of transcript abundance in human RNA-Seq samples from whole blood, brain cortex, breast, liver, and thyroid tissues of 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. We found that using a reference genome with the sex chromosome complement of the sample resulted in higher measurements of X-linked gene transcription for both male and female samples and more differentially expressed genes on the X and Y chromosomes. We additionally investigated the use of a sex chromosome complement informed transcriptome reference index for alignment free quantification protocols. We observed no Y-linked expression in female XX samples only when the transcript quantification was performed using a transcriptome reference index informed on the sex chromosome complement of the sample. We recommend that future studies requiring aligning RNA-Seq reads to a reference genome or pseudo-alignment with a transcriptome reference should consider the sex chromosome complement of their samples prior to running default pipelines.


2019 ◽  
Author(s):  
Ruijie Liu ◽  
Wai Yee Low ◽  
Rick Tearle ◽  
Sergey Koren ◽  
Jay Ghurye ◽  
...  

Abstract Background Mammalian X chromosomes are mainly euchromatic with a similar size and structure among species whereas Y chromosomes are smaller, have undergone substantial evolutionary changes and accumulated male specific genes and genes involved in sex determination. The PAR is conserved on the X and Y and pair during meiosis. The structure, evolution and function of mammalian sex chromosomes is still poorly understood because few species have high quality sex chromosome assemblies. Results Here we report the first bovine sex chromosome assemblies that include the complete pseudoautosomal region (PAR) spanning 6.84 Mb and three Y chromosome X-degenerate (X-d) regions. We show that the ruminant PAR comprises 31 genes and is similar to the PAR of pig and dog but extends further than those of human and horse. Differences in the pseudoautosomal boundaries are consistent with evolutionary divergence times. Conclusions A bovidae-specific expansion of members of the lipocalin gene family in the PAR may reflect immune-modulation and anti-inflammatory responses that contribute to parasite resistance in ruminants. Comparison of the X-d regions of Y chromosomes across species reveal five conserved X-Y gametologs, which are global regulators of gene activity, and may have a fundamental role in mammalian sexual dimorphism.


Sign in / Sign up

Export Citation Format

Share Document