morphological differentiation
Recently Published Documents


TOTAL DOCUMENTS

1164
(FIVE YEARS 185)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Huaiwei Liu ◽  
Luying Xun ◽  
Ting Lu ◽  
Xiaohua Wu ◽  
Qun Cao ◽  
...  

The transcription factor AdpA is a key regulator controlling both secondary metabolism and morphological differentiation in Streptomyces. Due to its critical functions, its expression undergoes multi-level regulations at transcriptional, post-transcriptional, and translational levels, yet no post-translational regulation has been reported. Sulfane sulfur, such as organic polysulfide (RSnH, n³2), is common inside microorganisms, but its physiological functions are largely unknown. Herein, we discovered that sulfane sulfur post-translationally modifies AdpA in S. coelicolor via specifically reacting with Cys62 of AdpA to form a persulfide (Cys62-SSH). This modification decreases the affinity of AdpA to its self-promoter PadpA, allowing increased expression of adpA, further promoting the expression of its target genes actII-4 and wblA. ActII-4 activates actinorhodin biosynthesis and WblA regulates morphological development. Bioinformatics analyses indicated that AdpA-Cys62 is highly conserved in Streptomyces, suggesting the prevalence of such modification in this genus. Thus, our study unveils a new type of regulation on the AdpA activity and sheds a light on how sulfane sulfur stimulates the production of antibiotics in Streptomyces.


2022 ◽  
Vol 15 ◽  
Author(s):  
Babykumari P. Chitramuthu ◽  
Víctor R. Campos-García ◽  
Andrew Bateman

Progranulin (PGRN) is critical in supporting a healthy CNS. Its haploinsufficiency results in frontotemporal dementia, while in experimental models of age-related neurodegenerative diseases, the targeted expression of PGRN greatly slows the onset of disease phenotypes. Nevertheless, much remains unclear about how PGRN affects its target cells. In previous studies we found that PGRN showed a remarkable ability to support the survival of NSC-34 motor neuron cells under conditions that would otherwise lead to their apoptosis. Here we used the same model to investigate other phenotypes of PGRN expression in NSC-34 cells. PGRN significantly influenced morphological differentiation, resulting in cells with enlarged cell bodies and extended projections. At a molecular level this correlated with pathways associated with the cytoskeleton and synaptic differentiation. Depletion of PGRN led to increased expression of several neurotrophic receptors, which may represent a homeostatic mechanism to compensate for loss of neurotrophic support from PGRN. The exception was RET, a neurotrophic tyrosine receptor kinase, which, when PGRN levels are high, shows increased expression and enhanced tyrosine phosphorylation. Other receptor tyrosine kinases also showed higher tyrosine phosphorylation when PGRN was elevated, suggesting a generalized enhancement of receptor activity. PGRN was found to bind to multiple plasma membrane proteins, including RET, as well as proteins in the ER/Golgi apparatus/lysosome pathway. Understanding how these various pathways contribute to PGRN action may provide routes toward improving neuroprotective therapies.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xinlei Guo ◽  
Jianli Liang ◽  
Runmao Lin ◽  
Lupeng Zhang ◽  
Jian Wu ◽  
...  

Chinese cabbage is an important leaf heading vegetable crop. At the heading stage, its leaves across inner to outer show significant morphological differentiation. However, the genetic control of this complex leaf morphological differentiation remains unclear. Here, we reported the transcriptome profiling of Chinese cabbage plant at the heading stage using 24 spatially dissected tissues representing different regions of the inner to outer leaves. Genome-wide transcriptome analysis clearly separated the inner leaf tissues from the outer leaf tissues. In particular, we identified the key transition leaf by the spatial expression analysis of key genes for leaf development and sugar metabolism. We observed that the key transition leaves were the first inwardly curved ones. Surprisingly, most of the heading candidate genes identified by domestication selection analysis obviously showed a corresponding expression transition, supporting that key transition leaves are related to leafy head formation. The key transition leaves were controlled by a complex signal network, including not only internal hormones and protein kinases but also external light and other stimuli. Our findings provide new insights and the rich resource to unravel the genetic control of heading traits.


2021 ◽  
Vol 10 (1) ◽  
pp. 30
Author(s):  
Roman Makitrynskyy ◽  
Olga Tsypik ◽  
Andreas Bechthold

Streptomycetes are soil-dwelling multicellular microorganisms famous for their unprecedented ability to synthesize numerous bioactive natural products (NPs). In addition to their rich arsenal of secondary metabolites, Streptomyces are characterized by complex morphological differentiation. Mostly, industrial production of NPs is done by submerged fermentation, where streptomycetes grow as a vegetative mycelium forming pellets. Often, suboptimal growth peculiarities are the major bottleneck for industrial exploitation. In this work, we employed genetic engineering approaches to improve the production of moenomycins (Mm) in Streptomyces ghanaensis, the only known natural direct inhibitors of bacterial peptidoglycan glycosyltransferses. We showed that in vivo elimination of binding sites for the pleiotropic regulator AdpA in the oriC region strongly influences growth and positively correlates with Mm accumulation. Additionally, a marker- and “scar”-less deletion of moeH5, encoding an amidotransferase from the Mm gene cluster, significantly narrows down the Mm production spectrum. Strikingly, antibiotic titers were strongly enhanced by the elimination of the pleiotropic regulatory gene wblA, involved in the late steps of morphogenesis. Altogether, we generated Mm overproducers with optimized growth parameters, which are useful for further genome engineering and chemoenzymatic generation of novel Mm derivatives. Analogously, such a scheme can be applied to other Streptomyces spp.


2021 ◽  
Vol 9 (12) ◽  
pp. 2612
Author(s):  
Joske Ruytinx ◽  
Shingo Miyauchi ◽  
Sebastian Hartmann-Wittulsky ◽  
Maíra de Freitas Pereira ◽  
Frédéric Guinet ◽  
...  

Trees are able to colonize, establish and survive in a wide range of soils through associations with ectomycorrhizal (EcM) fungi. Proper functioning of EcM fungi implies the differentiation of structures within the fungal colony. A symbiotic structure is dedicated to nutrient exchange and the extramatricular mycelium explores soil for nutrients. Eventually, basidiocarps develop to assure last stages of sexual reproduction. The aim of this study is to understand how an EcM fungus uses its gene set to support functional differentiation and development of specialized morphological structures. We examined the transcriptomes of Laccaria bicolor under a series of experimental setups, including the growth with Populus tremula x alba at different developmental stages, basidiocarps and free-living mycelium, under various conditions of N, P and C supply. In particular, N supply induced global transcriptional changes, whereas responses to P supply seemed to be independent from it. Symbiosis development with poplar is characterized by transcriptional waves. Basidiocarp development shares transcriptional signatures with other basidiomycetes. Overlaps in transcriptional responses of L. bicolor hyphae to a host plant and N/C supply next to co-regulation of genes in basidiocarps and mature mycorrhiza were detected. Few genes are induced in a single condition only, but functional and morphological differentiation rather involves fine tuning of larger gene sets. Overall, this transcriptomic atlas builds a reference to study the function and stability of EcM symbiosis in distinct conditions using L. bicolor as a model and indicates both similarities and differences with other ectomycorrhizal fungi, allowing researchers to distinguish conserved processes such as basidiocarp development from nutrient homeostasis.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 674
Author(s):  
Jakub Sawicki ◽  
Katarzyna Krawczyk ◽  
Monika Ślipiko ◽  
Kamil Szandar ◽  
Monika Szczecińska

The simple thalloid liverwort Apopellia endiviifolia is a widespread Holarctic species belonging to the family Pelliaceae. European populations of this species comprise two distinct evolutionary lineages named “species A”, known also as water form, and typical, mainly terrestrial forms named “species B”. Newly sequenced, assembled and annotated chloroplast genomes of six European specimens belonging to the two cryptic lineages occupying different microhabitats, revealed the structure typical for liverworts and previously sequenced reference. The plastomes of A. endiviifolia are 120,537–120,947 bp long with a structure typical for most plants, including a pair of IR regions (each of 9092–9207 bp) separated by LSC (82,506–82,609 bp) and SSC (19,854–19,924 bp) regions and consist of 121 unique genes, including 81 protein-coding genes, 6 genes of unknown function (ycf genes), 4 ribosomal RNAs and 30 transfer RNAs. Comparative analysis of typical, terrestrial and water forms revealed 4971 molecular diagnostic characters (MDCs), which exceeds numbers found in many well recognized liverworts taxa. Moreover, beside the presence of evolutionary hotspots like ycf1 and ycf2 genes and several intergenic spacer like ndhB-psbM, rps4-ndhJ and ndhC-atpE, the molecular identification of Apopellia cryptic species was possible by almost 98% of 500 bp long frames simulating mini barcodes. The different ecological niches can be driven by different pressures of positive selection, which was detected in nine genes including ccsA, ndhD, ndhF, petA, psbB, psbC, rpoB, ycf1 and ycf2. Despite clearly genetic differences and ecological preferences, the current observation of morphological differentiation does not no allow to separate terrestrial and water forms into taxonomic species.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3565
Author(s):  
Kun Tan ◽  
De-Pin Li ◽  
Na Li ◽  
Yi-Hao Fang ◽  
Yan-Peng Li ◽  
...  

The elevational range where montane species live is a key factor of spatial niche partitioning, because the limits of such ranges are influenced by interspecies interaction, abiotic stress, and dispersal barriers. At the regional scale, unimodal distributions of single species along the elevation gradient have often been reported, while discontinuous patterns, such as bimodal distributions, and potential ecological implications have been rarely discussed. Here, we used extensive camera trap records to reveal the elevation distribution of Himalaya blue sheep (Pseudois nayaur) and its co-existence with other ground animal communities along a slope of Baima Snow Mountain, southwest China. The results show that Himalaya blue sheep exhibited a distinctive bimodal distribution along the elevation gradient contrasting the unimodal distributions found for the other ungulates in Baima snow mountain. A first distributional peak was represented by a population habituating in scree habitat around 4100 m, and a second peak was found in the dry-hot valley around 2600 m. The two distinct populations co-existed with disparate animal communities and these assemblages were similar both in the dry and rainy seasons. The extremely low abundance of blue sheep observed in the densely forested belt at mid-elevation indicates that vegetation rather than temperature is responsible for such segregation. The low-elevation population relied highly on Opuntia ficus-indica, an invasive cactus species that colonized the region six hundred years ago, as food resource. Being the only animal that developed a strategy to feed on this spiky plant, we suggest invasive species may have formed new foraging niche to support blue sheep population in lower elevation hot-dry river valleys, resulting in the geographic separation from the original population and a potential morphological differentiation, as recorded. These findings emphasize the important conservation values of role of ecological functions to identify different taxa, and conservation values of apparent similar species of different ecological functions.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12625
Author(s):  
Yoonhee Cho ◽  
Ji Seon Kim ◽  
Yu-Cheng Dai ◽  
Yusufjon Gafforov ◽  
Young Woon Lim

Genus Xylodon consists of white-rot fungi that grow on both angiosperms and gymnosperms. With resupinate and adnate basidiomes, Xylodon species have been classified into other resupinate genera for a long time. Upon the integration of molecular assessments, the taxonomy of the genus has been revised multiple times over the years. However, the emendations were poorly reflected in studies and public sequence databases. In the present study, the genus Xylodon in Korea was evaluated using molecular and morphological analyses of 172 specimens collected in the period of 2011 to 2018. The host types and geographical distributions were also determined for species delimitation. Furthermore, public sequences that correspond to the Xylodon species in Korea were assessed to validate their identities. Nine Xylodon species were identified in Korea, with three species new to the country. Morphological differentiation and identification of some species were challenging, but all nine species were clearly divided into well-resolved clades in the phylogenetic analyses. Detailed species descriptions, phylogeny, and a key to Xylodon species in Korea are provided in the present study. A total of 646 public ITS and nrLSU sequences corresponding to the nine Xylodon species were found, each with 404 (73.1%) and 57 (61.3%) misidentified or labeled with synonymous names. In many cases, sequences released before the report of new names have not been revised or updated. Revisions of these sequences are arranged in the present study. These amendments may be used to avoid the misidentification of future sequence-based identifications and concurrently prevent the accumulation of misidentified sequences in GenBank.


Author(s):  
Małgorzata Płachetka ◽  
Michał Krawiec ◽  
Jolanta Zakrzewska-Czerwińska ◽  
Marcin Wolański

Streptomyces are well-known producers of valuable secondary metabolites which include a large variety of antibiotics and important model organisms for developmental studies in multicellular bacteria. The conserved transcriptional regulator AdpA of Streptomyces exerts a pleiotropic effect on cellular processes, including the morphological differentiation and biosynthesis of secondary metabolites.


2021 ◽  
Vol 63 (4) ◽  
pp. 276-288
Author(s):  
Małgorzata Mazur ◽  
Katarzyna A. Jadwiszczak ◽  
Agnieszka Bona ◽  
Yuliya Krasylenko ◽  
Oleg Kukushkin ◽  
...  

Abstract Juniperus excelsa s. str. (Greek juniper) in Crimea is a relic species on the limits of its range, and represents the Mediterranean flora in the Sub-Mediterranean part of the peninsula. Its origin and history in this area remains unresolved. We aimed to analyze phylogeny and potential demographic expansion of the juniper in the Crimea as well as to study its morphological differentiation. We analyzed plant material from 59 trees inhabiting eight populations. Genetic variation assessments were based on the four non-coding chloroplast DNA (cpDNA) fragments and the nuclear internal transcribed spacer region ITS1-5,8S-ITS2 (ITS). To examine the morphological differentiation, eight measured/counted traits of cones, seeds, and shoots were chosen and eight ratios were calculated. Morphological parameters were compared using ANOVA, Student’s t test, discrimination analysis and Kruskal-Wallis and U Mann-Whitney tests. Two cpDNA fragments were polymorphic and, in total, 10 cpDNA haplotypes were found. Haplotype diversity (Hd) ranged from 0.0 to 0.9. Based on both cpDNA and ITS sequences variation, phylogenetic analyses revealed a close relationship of the Crimean junipers to the individuals from other parts of the species range. In general, our molecular results confirmed the low level of genetic differentiation of J. excelsa individuals inhabiting different parts of the species range, likely resulting from a common ancestry. Only slight morphological differences were found between populations with different geographic location or habitat. The analyzes showed the distinctness of the populations from the southern part of the coast. Some unique morphological and molecular features of southern coastal populations imply that they are remnants of Late Pleistocene abundant forests. We suggest that the recent fragmentation of the Juniperus populations in the Crimean Peninsula could have arisen during the Atlantic period of the Holocene.


Sign in / Sign up

Export Citation Format

Share Document