scholarly journals Direct Inversion Method of Fault Slip Analysis to Determine the Orientation of Principal Stresses and Relative Chronology for Tectonic Events in Southwestern White Mountain Region of New Hampshire, USA

Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 464 ◽  
Author(s):  
Christopher C. Barton ◽  
Jacques Angelier

The orientation and relative magnitudes of paleo tectonic stresses in the western central region of the White Mountains of New Hampshire is reconstructed using the direct inversion method of fault slip analysis on 1–10-m long fractures exposed on a series of road cuts along Interstate 93, just east of the Hubbard Brook Experimental Forest in North Woodstock, NH, USA. The inversion yields nine stress regimes which identify five tectonic events that impacted the White Mountain region over the last 410 Ma. The inversion method has potential application in basin analysis.

2013 ◽  
Author(s):  
William B. Leak ◽  
Mariko. Yamasaki

2019 ◽  
Author(s):  
Caleb Forrest Town ◽  
◽  
Justin V. Strauss ◽  
Sean T. Kinney ◽  
Scott A. Maclennan ◽  
...  

2021 ◽  
Vol 4 (4) ◽  
pp. 415-424
Author(s):  
A. A. Issa ◽  
K. O. Adetunji ◽  
T. Alanamu ◽  
E. J. Adefila ◽  
K. A. Muhammed

Statistical models of biased sampling of two non-central hypergeometric distributions Wallenius' and Fisher's distribution has been extensively used in the literature, however, not many of the logic of hypergeometric distribution have been investigated by different techniques. This research work examined the procedure of the two non-central hypergeometric distributions and investigates the statistical properties which includes the mean and variance that were obtained. The parameters of the distribution were estimated using the direct inversion method of hyper simulation of biased urn model in the environment of R statistical software, with varying odd ratios (w) and group sizes (mi). It was discovered that the two non - central hypergeometric are approximately equal in mean, variance and coefficient of variation and differ as odds ratios (w) becomes higher and differ from the central hypergeometric distribution with ω = 1. Furthermore, in univariate situation we observed that Fisher distribution at (ω = 0.2, 0.5, 0.7, 0.9) is more consistent than Wallenius distribution, although central hypergeometric is more consistent than any of them. Also, in multinomial situation, it was observed that Fisher distribution is more consistent at (ω = 0.2, 0.5), Wallenius distribution at (ω = 0.7, 0.9) and central hypergeometric at (ω = 0.2)    


1981 ◽  
Vol 45 (9) ◽  
pp. 1421-1437 ◽  
Author(s):  
Noye M. Johnson ◽  
Charles T. Driscoll ◽  
John S. Eaton ◽  
Gene E. Likens ◽  
William H. McDowell

2019 ◽  
Vol 220 (2) ◽  
pp. 1055-1065 ◽  
Author(s):  
Kousuke Shimizu ◽  
Yuji Yagi ◽  
Ryo Okuwaki ◽  
Yukitoshi Fukahata

SUMMARY Teleseismic waveforms contain information on fault slip evolution during an earthquake, as well as on the fault geometry. A linear finite-fault inversion method is a tool for solving the slip-rate function distribution under an assumption of fault geometry as a single or multiple-fault-plane model. An inappropriate assumption of fault geometry would tend to distort the solution due to Green’s function modelling errors. We developed a new inversion method to extract information on fault geometry along with the slip-rate function from observed teleseismic waveforms. In this method, as in most previous studies, we assumed a flat fault plane, but we allowed arbitrary directions of slip not necessarily parallel to the assumed fault plane. More precisely, the method represents fault slip on the assumed fault by the superposition of five basis components of potency-density tensor, which can express arbitrary fault slip that occurs underground. We tested the developed method by applying it to real teleseismic P waveforms of the MW 7.7 2013 Balochistan, Pakistan, earthquake, which is thought to have occurred along a curved fault system. The obtained spatiotemporal distribution of potency-density tensors showed that the focal mechanism at each source knot was dominated by a strike-slip component with successive strike angle rotation from 205° to 240° as the rupture propagated unilaterally towards the south-west from the epicentre. This result is consistent with Earth’s surface deformation observed in optical satellite images. The success of the developed method is attributable to the fact that teleseismic body waves are not very sensitive to the spatial location of fault slip, whereas they are very sensitive to the direction of fault slip. The method may be a powerful tool to extract information on fault geometry along with the slip-rate function without requiring detailed assumptions about fault geometry.


1998 ◽  
Vol 103 (2-3) ◽  
pp. 217-233 ◽  
Author(s):  
Richard M. DeGraaf ◽  
Jay B. Hestbeck ◽  
Mariko Yamasaki

Sign in / Sign up

Export Citation Format

Share Document