scholarly journals DEM Embedding in GNSS-Based Navigation Using a Statistical Modeling

2021 ◽  
Vol 6 (1) ◽  
pp. 74
Author(s):  
Christophe Boucher ◽  
Hiba Al-Assaad ◽  
Ali Daher ◽  
Ahmad Shahin ◽  
Jean-Charles Noyer

Given the boom linked to smart mobility, transport systems require increasingly precise and relevant navigation applications to offer optimized journeys in terms of time and energy consumption, such as for HEV. Most of these navigation applications are based on the processing of 2D digital road maps, while taking into account the GNSS location of vehicles. These localization systems also integrate sensors such as accelerometers and gyroscopes to overcome the well-known problems of GPS positioning, even if the current limited introduction of IoT in the transport industry has made it possible to develop new aided-GPS methods such as geofencing. This paper focuses on one important parameter in the journey optimization of land vehicles: the road slope. We propose a method to estimate the roads’ inclination parameters by fusing GNSS, INS, OSM and ASTER GDEM data through a nonlinear filter. The incremental estimate of the slope will complement the 2D modeling of the roads already available in OpenStreetMap and could be used in route planning optimization. The scientific novelty lies more specifically in the statistical map-matching approaches that we develop both for OSM and DEM data. Estimation results of the roads slopes are shown in experimental conditions.

Author(s):  
Tom Partridge ◽  
Lorelei Gherman ◽  
David Morris ◽  
Roger Light ◽  
Andrew Leslie ◽  
...  

Transferring sick premature infants between hospitals increases the risk of severe brain injury, potentially linked to the excessive exposure to noise, vibration and driving-related accelerations. One method of reducing these levels may be to travel along smoother and quieter roads at an optimal speed, however this requires mass data on the effect of roads on the environment within ambulances. An app for the Android operating system has been developed for the purpose of recording vibration, noise levels, location and speed data during ambulance journeys. Smartphone accelerometers were calibrated using sinusoidal excitation and the microphones using calibrated pink noise. Four smartphones were provided to the local neonatal transport team and mounted on their neonatal transport systems to collect data. Repeatability of app recordings was assessed by comparing 37 journeys, made during the study period, along an 8.5 km single carriageway. The smartphones were found to have an accelerometer accurate to 5% up to 55 Hz and microphone accurate to 0.8 dB up to 80 dB. Use of the app was readily adopted by the neonatal transport team, recording more than 97,000 km of journeys in 1 year. To enable comparison between journeys, the 8.5 km route was split into 10 m segments. Interquartile ranges for vehicle speed, vertical acceleration and maximum noise level were consistent across all segments (within 0.99 m . s−1, 0.13 m · s−2 and 1.4 dB, respectively). Vertical accelerations registered were representative of the road surface. Noise levels correlated with vehicle speed. Android smartphones are a viable method of accurate mass data collection for this application. We now propose to utilise this approach to reduce potential harmful exposure, from vibration and noise, by routing ambulances along the most comfortable roads.


2020 ◽  
Vol 11 (1) ◽  
pp. 305
Author(s):  
Rubén Escribano-García ◽  
Marina Corral-Bobadilla ◽  
Fátima Somovilla-Gómez ◽  
Rubén Lostado-Lorza ◽  
Ash Ahmed

The dimensions and weight of machines, structures, and components that need to be transported safely by road are growing constantly. One of the safest and most widely used transport systems on the road today due to their versatility and configuration are modular trailers. These trailers have hydraulic pendulum axles that are that are attached in pairs to the rigid platform above. In turn, these modular trailers are subject to limitations on the load that each axle carries, the tipping angle, and the oil pressure of the suspension system in order to guarantee safe transport by road. Optimizing the configuration of these modular trailers accurately and safely is a complex task. Factors to be considered include the load’s characteristics, the trailer’s mechanical properties, and road route conditions including the road’s slope and camber, precipitation and direction, and force of the wind. This paper presents a theoretical model that can be used for the optimal configuration of hydraulic cylinder suspension of special transport by road using modular trailers. It considers the previously mentioned factors and guarantees the safe stability of road transport. The proposed model was validated experimentally by placing a nacelle wind turbine at different points within a modular trailer. The weight of the wind turbine was 42,500 kg and its dimensions were 5133 × 2650 × 2975 mm. Once the proposed model was validated, an optimization algorithm was employed to find the optimal center of gravity for load, number of trailers, number of axles, oil pressures, and hydraulic configuration. The optimization algorithm was based on the iterative and automatic testing of the proposed model for different positions on the trailer and different hydraulic configurations. The optimization algorithm was tested with a cylindrical tank that weighed 108,500 kg and had dimensions of 19,500 × 3200 × 2500 mm. The results showed that the proposed model and optimization algorithm could safely optimize the configuration of the hydraulic suspension of modular trailers in special road transport, increase the accuracy and reliability of the calculation of the load configuration, save time, simplify the calculation process, and be easily implemented.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2848 ◽  
Author(s):  
Leonel Rosas-Arias ◽  
Jose Portillo-Portillo ◽  
Aldo Hernandez-Suarez ◽  
Jesus Olivares-Mercado ◽  
Gabriel Sanchez-Perez ◽  
...  

The counting of vehicles plays an important role in measuring the behavior patterns of traffic flow in cities, as streets and avenues can get crowded easily. To address this problem, some Intelligent Transport Systems (ITSs) have been implemented in order to count vehicles with already established video surveillance infrastructure. With this in mind, in this paper, we present an on-line learning methodology for counting vehicles in video sequences based on Incremental Principal Component Analysis (Incremental PCA). This incremental learning method allows us to identify the maximum variability (i.e., motion detection) between a previous block of frames and the actual one by using only the first projected eigenvector. Once the projected image is obtained, we apply dynamic thresholding to perform image binarization. Then, a series of post-processing steps are applied to enhance the binary image containing the objects in motion. Finally, we count the number of vehicles by implementing a virtual detection line in each of the road lanes. These lines determine the instants where the vehicles pass completely through them. Results show that our proposed methodology is able to count vehicles with 96.6% accuracy at 26 frames per second on average—dealing with both camera jitter and sudden illumination changes caused by the environment and the camera auto exposure.


2013 ◽  
Vol 357-360 ◽  
pp. 2720-2725
Author(s):  
Hsi Sung Wang ◽  
Shu Shun Liu

The research objective is to support the maintenance unit with route planning prior to performing road inspection, the model is based on VRP problem settings, and with the addition of compulsory road sections and allowing shortcuts through small pathways during the inspection to reduce time consumption. By employing Constraint Programming (CP) technology and optimization solution mechanism to construct inspection scheduling model, and the objective is to minimize time consumption of the road inspection. The province and county roads in Douliou city are chosen as examples for analysis, plans out best routes for inspection process, and also displays all the road sections passed by inspection vehicle. Thus this model can be used as reference to support the authorities to efficiently allocate resources for the inspection process, and achieve the objective as shorten the inspection time consumption.


2021 ◽  
Vol 11 (13) ◽  
pp. 6010
Author(s):  
Han-Seong Gwak ◽  
Hong-Chul Lee ◽  
Byoung-Yoon Choi ◽  
Yirong Mi

Mobile cranes have been used extensively as essential equipment at construction sites. The productivity improvement of the mobile crane affects the overall productivity of the construction project. Hence, various studies have been conducted regarding mobile crane operation planning. However, studies on solving RCP (the repositioning mobile crane problem) are insufficient. This article presents a mobile crane reposition route planning optimization method (RPOS) that minimizes the total operating time of mobile crane. It converts the construction site into a mathematical model, determines feasible locations of the mobile crane, and identifies near-global optimal solution (s) (i.e., the placement point sequences of mobile crane) by implementing genetic algorithm and dijkstra’s algorithm. The study is of value to practitioners because RPOS provides an easy-to-use computerized tool that reduces the lengthy computations relative to data processing and Genetic Algorithms (GAs). Test cases verify the validity of the computational method.


Author(s):  
Tomislav Petrović ◽  
Miloš Milosavljević ◽  
Milan Božović ◽  
Danislav Drašković ◽  
Milija Radović

The application of intelligent transport systems (hereinafter ITSs) on roads enables continuous monitoring of road users during a whole year with the aim to collect good-quality data based on which the more complex analyses could be done, such as monitoring of certain traffic safety indicators. Automatic traffic counters are one of the most commonly implemented ITSs for collecting traffic flow parameters that are relevant for traffic management on state roads in Republic of Serbia. This paper presents one of the possible ways to collect, analyze and present data on road users’ speeds using automatic traffic counters, where certain traffic safety indicators are analyzed in terms of road users’ compliance with the speed limit on the road section from Mali Pozarevac to Kragujevac. Based on the analyses of data downloaded from automatic traffic counters, it is observed that an extremely high percentage of vehicles drive at speed higher than the speed limit, indicating clearly to higher traffic accident risk, as well as to the need for a tendency to implement speed management on roads using ITS in the forthcoming period.


2013 ◽  
Vol 20 (1) ◽  
pp. 85-96 ◽  
Author(s):  
Byung-Hyun Lee ◽  
Gyu-In Jee

ABSTRACT For ITS (Intelligent Transport Systems), especially for land vehicles, precise position is the prime information. GNSS is the most popular navigation system. Generally, ITS demands lane distinguishable positioning accuracy. However urban area is most environments of land vehicles and the signal blocks of satellite with low elevation angle, multipath error and etc. make unreliable positioning results. Especially, lack of number of visible satellites (fewer than 4 satellites) cannot provide positioning results. QZSS (Quasi-Zenith Satellite System) which operated by Japan has high interoperability. In addition, its elevation angle is very high in long time in Korea. It means QZSS signal can be received in urban area and it can be great advantage for land vehicles. The most positioning errors are occurred by multipath, cycle slip, and etc. For example, multipath error is unexpected momentary error. In order to reduce position error, smoothing technique in position domain is needed. In this paper, precise positioning for land vehicles was evaluated. First, by using QZSS, probability of navigation solution was enhanced. Second, the reliability is improved by smoothing positioning result using Doppler measurement. The analysis was performed by trajectory analysis using precise map data.


Author(s):  
Ronald Schroeter ◽  
Alessandro Soro ◽  
Andry Rakotonirainy

Intelligent Transport Systems (ITS) encompass sensing technologies, wireless communication, and intelligent algorithms, and resemble the infrastructure for ubiquitous computing in the car. This chapter borrows from social media, locative media, mobile technologies, and urban informatics research to explore three classes of ITS applications in which human behavior plays a more pivotal role. Applications for enhancing self-awareness could positively influence driver behavior, both in real-time and over time. Additionally, tools capable of supporting our social awareness while driving could change our attitude towards others and make it easier and safer to share the road. Lastly, a better urban awareness in and outside the car improves our understanding of the road infrastructure as a whole. As a case study, the authors discuss emotion recognition (emotions such as aggressiveness and anger are a major contributing factor to car crashes) and a suitable basis and first step towards further exploring the three levels of awareness, self-, social-, and urban-awareness, in the context of driving on roads.


2019 ◽  
Vol 8 (3) ◽  
pp. 141 ◽  
Author(s):  
Knut Jetlund ◽  
Erling Onstein ◽  
Lizhen Huang

This study aims to improve interoperability between Geographic Information Systems (GIS) and geospatial databases for Intelligent Transport Systems (ITS). Road authorities maintain authoritative information for legal and safe navigation in GIS databases. This information needs to be shared with ITS databases for route planning and navigation, and for use in combination with local knowledge from vehicle sensors. Current solutions for modelling and exchanging geospatial information in the domains of GIS and ITS have been studied and evaluated. Limitations have been pointed out related to usability in the GIS domain and flexibility for representing an evolving real world. A prototype for an improved information exchange model has been developed, based on ISO/TC 211 standards, Model Driven Architecture (MDA), and concepts from the studied solutions. The prototype contains generic models for feature catalogues and features, with implementation schemas in the Geography Markup Language (GML). Results from a case study indicated that the models could be implemented with feature catalogues from the ITS standard ISO 14825 Geographic Data Files (GDF) and the INSPIRE Transport Networks specification. The prototype can be a candidate solution for improved information exchange from GIS databases to ITS databases that are based on the Navigation Data Standard.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 360
Author(s):  
V. I. Nekrasov ◽  
R. A. Ziganshin ◽  
A. V. Ziganshina ◽  
N. S. Zakharov ◽  
G. N. Shpitko

The article considers the issue of the transmission's effect on the operational properties of the land vehicles. The main transmission parameters are given in the work. The analysis of the possibilities of using different types of transmission is shown. The technique for selecting the number of gears and the mean value of the capacity utilization factor is considered. The technical and economic assessment is given on the basis of complex factors of the specific productivity of the road train and the prime cost of its use.  


Sign in / Sign up

Export Citation Format

Share Document