scholarly journals Combined Exposure to Metals in Drinking Water Alters the Dopamine System in Mouse Striatum

Author(s):  
Haesoo Kim ◽  
Daeun Lee ◽  
Kisok Kim

Environmental exposure to arsenic (As), lead (Pb), and cadmium (Cd) frequently occurs; however, data on the specific effects of combined exposure on neurotransmission, specifically dopaminergic neurotransmission, are lacking. In this study, motor coordination and dopamine content, along with the expression of tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), and dopamine receptors (DRs), were examined in the striatum of adult male mice following exposure to drinking water containing As, Pb, and/or Cd. We found that exposure to a metal mixture impaired motor coordination. After 4 weeks of treatment, a significant decrease in dopamine content and expression of TH, DAT, and VMAT2 was observed in the striatum of metal-mixture-treated mice, compared to the controls or single-metal-exposed groups. However, DRD1 and DRD2 expression did not significantly change with metal treatment. These results suggest that altered dopaminergic neurotransmission by the collective action of metals may contribute to metal-mixture-induced neurobehavioral disorders.

2021 ◽  
Vol 22 (24) ◽  
pp. 13305
Author(s):  
Maren K. Schroeder ◽  
Bin Liu ◽  
Robert G. Hinshaw ◽  
Mi-Ae Park ◽  
Shuyan Wang ◽  
...  

Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer’s disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer’s-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aβ) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aβ and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.


2022 ◽  
Vol 16 (1) ◽  
pp. 1-8
Author(s):  
Priyanka Bist ◽  
◽  
Sangeeta Choudhary ◽  

Background: Heavy metal containing wastes reaches to the food chain either directly or indirectly. These ingested toxic elements manifest direct impact on the gut ecosystem and its overall functioning. The present study explores the alteration in mice gut bacteria on exposure to mixture of toxic heavy metals through drinking water. Methods: Twelve experimental groups of Swiss albino male and female mice were exposed to the metal mixture of varying concentrations. Profiling of gut bacterial flora was done by periodical collection of fecal samples via culture-based technique. Redox status of all experimental animals was analyzed in blood samples collected on the day 30. Results: In comparison to the controls, nearly a 10-fold decline in colony forming units/ml was observed at higher modal concentrations (50× & 100×) at the end of 15 days, but 100-fold reduced bacterial count was recorded following 30 days of dosing. Sex specific significant alteration in the bacteria count and diversity was also observed. Overall experimental results showed a heavy metal dose-dependent decline in bacterial count and loss in diversity. Disturbance in the oxidative stress markers was recorded in response to high dose of metal mixture. In group receiving 100× dose, malondialdehyde levels were increased in the erythrocytes (P<0.05), and all of the other antioxidant parameters were decreased (P<0.05), except for reduced glutathione in both male and female mice. Conclusion: The present work is the first report on the multiple heavy metals induced gut microbiota alterations and its correlation to oxidative stress.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Lie-Hang Shen ◽  
Mei-Hsiu Liao ◽  
Yu-Chin Tseng

Dopamine is the most intensely studied monoaminergic neurotransmitter. Dopaminergic neurotransmission plays an important role in regulating several aspects of basic brain function, including motor, behavior, motivation, and working memory. To date, there are numerous positron emission tomography (PET) and single photon emission computed tomography (SPECT) radiotracers available for targeting different steps in the process of dopaminergic neurotransmission, which permits us to quantify dopaminergic activity in the living human brain. Degeneration of the nigrostriatal dopamine system causes Parkinson’s disease (PD) and related Parkinsonism. Dopamine is the neurotransmitter that has been classically associated with the reinforcing effects of drug abuse. Abnormalities within the dopamine system in the brain are involved in the pathophysiology of attention deficit hyperactivity disorder (ADHD). Dopamine receptors play an important role in schizophrenia and the effect of neuroleptics is through blockage of dopamine D2receptors. This review will concentrate on the radiotracers that have been developed for imaging dopaminergic neurons, describe the clinical aspects in the assessment of neuropsychiatric disorders, and suggest future directions in the diagnosis and management of such disorders.


2009 ◽  
Vol 105 (2) ◽  
pp. 472-476 ◽  
Author(s):  
W. L. Isaac ◽  
W. F. McDaniel ◽  
J. D. Corley ◽  
S. Emard ◽  
C. McDonald ◽  
...  

Pregnant rats were exposed to one of the following treatments: 20% aqueous sucrose (w/v; Control), 20% aqueous sucrose with 20 mg D-cycloser-ine (DCS), 20% aqueous sucrose with 5% ethanol (ETH), or 20% aqueous sucrose with both 20 mg DCS and 5% ethanol (DCS + ETH). Treatments were delivered in 20 ml of drinking water provided daily, as pilot work had determined that this was the average daily water consumption for female rats. Treatments began on Day 10 or 11 of pregnancy and terminated on postnatal Day 10. As juveniles, offspring were tested for activity in an open field and motor coordination using a rotating rod. Ethanol and DCS+ Ethanol groups were the most active groups in the open field, and DCS and DCS+ Ethanol groups had fewer falls than the Control and Ethanol groups on the rod test. Results suggest that DCS might provide protection from ethanol's adverse effects on some developmental behaviors.


2015 ◽  
Vol 66 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Iwona Markiewicz-Górka ◽  
Lidia Januszewska ◽  
Aleksandra Michalak ◽  
Adam Prokopowicz ◽  
Ewa Januszewska ◽  
...  

Abstract The aim of this study was to assess the effects of chronic combined exposure to low, environmental doses of Cd, Pb, and Mn on oxidative stress in the liver and heart of rats and on their liver function parameters. Male Wistar rats were divided randomly into eight groups. For nine months controls were receiving drinking water alone, whereas the exposed groups were receiving drinking water with Pb (0.2 mg L-1), Cd (1 mg L-1), and Mn (2 mg L-1) alone or in combinations. Malondialdehyde (MDA) significantly increased in both heart and liver of the animals after combined exposure to metals. Heart MDA correlated with blood Cd, Pb, and Mn and liver MDA with blood Cd. Aspartate aminotransferase (AST) activity and bilirubin concentration also increased significantly in the animal group exposed to all three metals and correlated positively with blood Cd, Pb, and Mn. Our study has confirmed the synergistic effect of the Cd, Mn, and Pb combination on the increase in heart MDA. A similar synergy was observed for Pb+Mn in the increase of serum alanine aminotransferase (ALT) activity as an indicator of liver function.


2020 ◽  
Vol 107 (3) ◽  
pp. 390-405
Author(s):  
J. Thanalakshmi ◽  
R. Archana ◽  
S. Senthilkumar ◽  
R. Shakila ◽  
N. Pazhanivel ◽  
...  

AbstractObjectiveParkinson's disease (PD) is a progressive neurodegenerative disorder. In order to explore a noninvasive treatment of PD, in the current study the authors evaluated the neuroprotective efficacy of caloric vestibular stimulation (CVS) using the rotenone-induced rat model of PD. The rotenone models of PD are gaining attention due to high reproducibility. It is also considered to be an improved model to exhibit the pathogenesis of PD and test the neuroprotective effect of various therapeutic interventions.Materials and methodsRotenone was i.p. injected (3 mg/kg body weight) to male Wistar albino rats for 21 days to induce PD. As PD is chronic and progressive in nature, the efficacy of chronic CVS intervention was evaluated for 30 days after inducing PD in rats. Motor symptoms were evaluated by assessing locomotor activity in actophotometer, whereas movement analysis was done using Ludolph test and motor coordination was evaluated using rotarod apparatus. The neurochemical and neuropathological changes were also observed in the corpus striatum of rats.ResultsRotenone administration showed decreased locomotor activity, motor coordination and general movement associated with significant (P < 0.05) reduction in dopamine content in the corpus striatum. The immunohistochemical analysis revealed a marked decrease in tyrosine hydroxylase (TH) immunoreactivity in striatal neurons indicating the significant loss of dopaminergic neurons in substantia nigra (SN) following rotenone injection. However, chronic treatment with CVS restored the nerve terminals in the striatum from rotenone damage. CVS treatment improved the dopaminergic system function by restoring dopamine content in the striatum. CVS also improved the motor deformities clearly suggesting the neuroprotective function.ConclusionThe results of the present study suggested CVS to be a safe and simple neuroprotective measure against neurodegenerative changes in PD and a promising noninvasive technique to overcome the motor symptoms associated with it. The findings could be useful for further investigations and clinical applications of CVS in the treatment of PD.


2013 ◽  
Vol 13 (2) ◽  
pp. 447-461 ◽  
Author(s):  
C. Pluchon ◽  
J. B. Sérodes ◽  
C. Berthiaume ◽  
S. J. Charette ◽  
Y. Gilbert ◽  
...  

Haloacetic acids (HAAs) are disinfection by-products formed as a result of the reaction between chlorine and natural organic matter found in water. HAA concentrations have been observed to decrease at distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAA degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of dichloracetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, composition of organic matter, and pipe diameter. Seasonal variations had a major effect on HAA degradation and biomass quantity was lower by 1 to 2 logs in the winter and spring compared with the fall. HAA removal decreased with increasingly large pipe diameters. The specific effects of each of these factors were difficult to isolate from each other owing to interactions.


Sign in / Sign up

Export Citation Format

Share Document