scholarly journals A Multi-Objective Permanent Basic Farmland Delineation Model Based on Hybrid Particle Swarm Optimization

2020 ◽  
Vol 9 (4) ◽  
pp. 243 ◽  
Author(s):  
Hua Wang ◽  
Wenwen Li ◽  
Wei Huang ◽  
Ke Nie

The delimitation of permanent basic farmland is essentially a multi-objective optimization problem. The traditional demarcation methods cannot simultaneously take into account the requirements of cultivated land quality and the spatial layout of permanent basic farmland, and it cannot balance the relationship between agriculture and urban development. This paper proposed a multi-objective permanent basic farmland delimitation model based on an immune particle swarm optimization algorithm. The general rules for delineating the permanent basic farmland were defined in the model, and the delineation goals and constraints have been formally expressed. The model introduced the immune system concepts to complement the existing theory. This paper describes the coding and initialization methods for the algorithm, particle position and speed update mechanism, and fitness function design. We selected Xun County, Henan Province, as the research area and set up control experiments that aligned with the different targets and compared the performance of the three models of particle swarm optimization (PSO), artificial immune algorithm (AIA), and the improved AIA-PSO in solving multi-objective problems. The experiments proved the feasibility of the model. It avoided the adverse effects of subjective factors and promoted the scientific rationality of the results of permanent basic farmland delineation.

2010 ◽  
Vol 1 (3) ◽  
pp. 51-66 ◽  
Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.


2012 ◽  
pp. 710-725
Author(s):  
Sujatha Balaraman ◽  
N. Kamaraj

This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.


Author(s):  
Afra A. Alabbadi and Maysoon F. Abulkhair Afra A. Alabbadi and Maysoon F. Abulkhair

As a result of the rapid growth of internet and smartphone technology, a novel platform that attracts individuals and groups known as crowdsourcing emerged. Crowdsourcing is an outsourcing platform that facilitates the accomplishment of costly tasks that consume long periods of time when traditional methods are used. Spatial crowdsourcing (SC) is based on location; it introduces a new framework for the physical world that enables a crowd to complete spatialtemporal tasks. The primary issue in SC is the assignment and scheduling of a set of available tasks to a set of proper workers based on different factors, such as the location of the task, the distance between task location and hired worker location, temporal conditions, and incentive rewards. In the real-world, SC applications need to optimize multi-objectives simultaneously to exploit the utility of SC, and these objectives can be in conflict. However, there are few studies that address this multi-objective optimization problem within a SC environment. Thus, the authors propose a multi-objective task scheduling optimization problem in SC that aims to maximize the number of completed tasks, minimize total travel cost, and ensure worker workload balance. To solve this problem, we developed a method that adapts the multi-objective particle swarm optimization (MOPSO) algorithm based on a proposed novel fitness function. The experiments were conducted with both synthetic and real datasets; the experimental results show that this approach provides acceptable initial results. As future work, we plan to improve the effectiveness of our proposed algorithm by integrating a simple ranking strategy based on task entropy and expected travel costs to enhance MOPSO performance.


Sign in / Sign up

Export Citation Format

Share Document