scholarly journals Detection of Promyelocytic Leukemia/Retinoic Acid Receptor α (PML/RARα) Fusion Gene with Functionalized Graphene Oxide

2013 ◽  
Vol 14 (6) ◽  
pp. 12863-12872 ◽  
Author(s):  
Ran Li ◽  
Yanhong Tan ◽  
Xiuhua Chen ◽  
Fanggang Ren ◽  
Yaofang Zhang ◽  
...  
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1601-1601
Author(s):  
Guo-Qiang Chen ◽  
Zhi-Min Gu ◽  
Mei-Yi Zhou ◽  
Ying-Li Wu ◽  
Ying Huang

Abstract Retinoids, a generic term that covers compounds including both naturally dietary vitamin A (retinol) metabolites and active synthetic analogs, exert their pleiotropic effects such as anticancer activity through the three retinoic acid receptors (RARs) subtypes [RARα, RARβ and RARγ]. The most impressive example of retinoid anticancer activity is the successful application of all-trans retinoic acid (ATRA) in the treatment of patients with acute promyelocytic leukemia (APL), a unique subtype of acute myelogenous leukemia (AML) which characterized with the specific reciprocal chromosome translocation t(15;17) that results in the expression of leukemia-promoting promyelocytic leukemia-retinoic acid receptor-α (PML-RARα) chimeric protein. However, retinoid resistance frequently occurred in ATRA-treated patients. Isodon xerophilus, a perennial shrub native to Southern China, has been used as an anti-tumor, anti-inflammatory, and anti-microbial agent in Chinese herb medicine for a long history. During the past 30 years, a large number of ent-kauranoids have been isolated from the genus Isodon, many of which exhibit potent antitumor activities with a relatively low toxicity. In this work, we identified a novel ent-kaurene diterpenoid named pharicin B to rapidly stabilize RARα as well as PML-RARα protein in AML cell lines. More intriguingly, it also antagonizes ATRA-induced degradation of RARα and PML-RARα proteins. The interesting finding promotes us to investigate its possible effects on AML cells. Our results demonstrated that pharicin B at nontoxic concentration suppresses growth in APL cell line NB4 and myeloblactic leukemic U937 and THP-1 cell lines. Together with exceedingly low concentration of ATRA and RARα specific agonist AM580 existed, pharicin B significantly triggered all the three cell lines and some NB4-derived ATRA-resistant cell lines such as NB4-MR2 and NB4-LR1 (but not NB4-LR2) to undergo myeloid maturation, as evidenced by morphology, CD11/CD14 expression and NBT reduction test. All these results proposed that pharicin B would be a good tool for investigating mechanisms of RARα stabilization and degradation induced by ATRA as well as retinoid resistance, and its combination with ATRA might present the clinical potentials for differentiation-inducing therapy of APL and other AML patients.


Blood ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 882-886 ◽  
Author(s):  
RL Redner ◽  
EA Rush ◽  
S Faas ◽  
WA Rudert ◽  
SJ Corey

We have studied an acute promyelocytic leukemia (APL) patient with a variant t(5;17)(q32;q12). This translocation fuses the gene for the nucleolar phosphoprotein nucleophosmin (NPM) to the retinoic acid receptor alpha (RARA). Two alternatively spliced transcripts are expressed, which differ in 129 bases immediately upstream of the RARA sequence. The NPM sequences contained in the shorter NPM-RAR cDNA are identical to the NPM sequences contained in the NPM-ALK fusion gene expressed in t(2;5) lymphomas. The RARA sequences are the same as the RARA sequences found in the PML-RAR and PLZF-RAR fusion seen in t(15;17) and t(11;17) APL, respectively. Both NPM-RAR transcripts fuse NPM and RARA sequence in the same reading frame, to generate translation products of 57 kD and 62 kD. Both NPM-RAR proteins are expressed in the patient's leukemic cells, along with wild-type RARA derived from the uninvolved allele. In transcriptional assays using a retinoic acid response element reporter construct, both NPM-RAR fusion proteins act as retinoic acid-dependent transcriptional activators. This case defines a third class of APL rearrangements, all of which generate fusion proteins of RARA.


2001 ◽  
Vol 193 (12) ◽  
pp. 1361-1372 ◽  
Author(s):  
Valérie Lallemand-Breitenbach ◽  
Jun Zhu ◽  
Francine Puvion ◽  
Marcel Koken ◽  
Nicole Honoré ◽  
...  

Promyelocytic leukemia (PML) is the organizer of nuclear matrix domains, PML nuclear bodies (NBs), with a proposed role in apoptosis control. In acute promyelocytic leukemia, PML/retinoic acid receptor (RAR) α expression disrupts NBs, but therapies such as retinoic acid or arsenic trioxide (As2O3) restore them. PML is conjugated by the ubiquitin-related peptide SUMO-1, a process enhanced by As2O3 and proposed to target PML to the nuclear matrix. We demonstrate that As2O3 triggers the proteasome-dependent degradation of PML and PML/RARα and that this process requires a specific sumolation site in PML, K160. PML sumolation is dispensable for its As2O3-induced matrix targeting and formation of primary nuclear aggregates, but is required for the formation of secondary shell-like NBs. Interestingly, only these mature NBs harbor 11S proteasome components, which are further recruited upon As2O3 exposure. Proteasome recruitment by sumolated PML only likely accounts for the failure of PML-K160R to be degraded. Therefore, studying the basis of As2O3-induced PML/RARα degradation we show that PML sumolation directly or indirectly promotes its catabolism, suggesting that mature NBs could be sites of intranuclear proteolysis and opening new insights into NB alterations found in viral infections or transformation.


2001 ◽  
Vol 193 (4) ◽  
pp. 531-544 ◽  
Author(s):  
Scott C. Kogan ◽  
Diane E. Brown ◽  
David B. Shultz ◽  
Bao-Tran H. Truong ◽  
Valerie Lallemand-Breitenbach ◽  
...  

The promyelocytic leukemia retinoic acid receptor α (PMLRARα) chimeric protein is associated with acute promyelocytic leukemia (APL). PMLRARα transgenic mice develop leukemia only after several months, suggesting that PMLRARα does not by itself confer a fully malignant phenotype. Suppression of apoptosis can have a central role in tumorigenesis; therefore, we assessed whether BCL-2 influenced the ability of PMLRARα to initiate leukemia. Evaluation of preleukemic animals showed that whereas PMLRARα alone modestly altered neutrophil maturation, the combination of PMLRARα and BCL-2 caused a marked accumulation of immature myeloid cells in bone marrow. Leukemias developed more rapidly in mice coexpressing PMLRARα and BCL-2 than in mice expressing PMLRARα alone, and all mice expressing both transgenes succumbed to leukemia by 7 mo. Although both preleukemic, doubly transgenic mice and leukemic animals had abundant promyelocytes in the bone marrow, only leukemic mice exhibited thrombocytopenia and dissemination of immature cells. Recurrent gain of chromosomes 7, 8, 10, and 15 and recurrent loss of chromosome 2 were identified in the leukemias. These chromosomal changes may be responsible for the suppression of normal hematopoiesis and dissemination characteristic of the acute leukemias. Our results indicate that genetic changes that inhibit apoptosis can cooperate with PMLRARα to initiate APL.


Sign in / Sign up

Export Citation Format

Share Document