scholarly journals Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study

2018 ◽  
Vol 19 (5) ◽  
pp. 1542 ◽  
Author(s):  
Pradeep Paudel ◽  
Ting Yu ◽  
Su Seong ◽  
Eun Kuk ◽  
Hyun Jung ◽  
...  
Marine Drugs ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 166 ◽  
Author(s):  
Pradeep Paudel ◽  
Su Seong ◽  
Hye Park ◽  
Hyun Jung ◽  
Jae Choi

The marine alga, Symphyocladia latiuscula (Harvey) Yamada, is a good source of bromophenols with numerous biological activities. This study aims to characterize the anti-diabetic potential of 2,3,6-tribromo-4,5-dihydroxybenzyl derivatives isolated from S. latiuscula via their inhibition of tyrosine phosphatase 1B (PTP1B) and α-glucosidase. Additionally, this study uses in silico modeling and glucose uptake potential analysis in insulin-resistant (IR) HepG2 cells to reveal the mechanism of anti-diabetic activity. This bioassay-guided isolation led to the discovery of three potent bromophenols that act against PTP1B and α-glucosidase: 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) (3). All compounds inhibited the target enzymes by 50% at concentrations below 10 μM. The activity of 1 and 2 was comparable to ursolic acid (IC50; 8.66 ± 0.82 μM); however, 3 was more potent (IC50; 5.29 ± 0.08 μM) against PTP1B. Interestingly, the activity of 1–3 against α-glucosidase was 30–110 times higher than acarbose (IC50; 212.66 ± 0.35 μM). Again, 3 was the most potent α-glucosidase inhibitor (IC50; 1.92 ± 0.02 μM). Similarly, 1–3 showed concentration-dependent glucose uptake in insulin-resistant HepG2 cells and downregulated PTP1B expression. Enzyme kinetics revealed different modes of inhibition. In silico molecular docking simulations demonstrated the importance of the 7–OH group for H-bond formation and bromine/phenyl ring number for halogen-bond interactions. These results suggest that bromophenols from S. latiuscula, especially highly brominated 3, are inhibitors of PTP1B and α-glucosidase, enhance insulin sensitivity and glucose uptake, and may represent a novel class of anti-diabetic drugs.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1452
Author(s):  
Orathai Saeting ◽  
Kasemsiri Chandarajoti ◽  
Angsuma Phongphisutthinan ◽  
Parichat Hongsprabhas ◽  
Sudathip Sae-tan

The present study aimed to investigate the effects of mungbean water extract (MWE) on insulin downstream signaling in insulin-resistant HepG2 cells. Whole seed mungbean was extracted using boiling water, mimicking a traditional cooking method. Vitexin and isovitexin were identified in MWE. The results showed that MWE inhibited protein tyrosine phosphatase (PTP)-1B (IC50 = 10 μg/mL), a negative regulator of insulin signaling. MWE enhanced cellular glucose uptake and altered expression of genes involved in glucose metabolism, including forkhead box O1 (FOXO1), phosphoenolpyruvate carboxykinase (PEPCK), and glycogen synthase kinase (GSK)-3β in the insulin-resistant HepG2 cells. In addition, MWE inhibited both α-amylase (IC50 = 36.65 mg/mL) and α-glucosidase (IC50 = 3.07 mg/mL). MWE also inhibited the formation of advanced glycation end products (AGEs) (IC50 = 2.28 mg/mL). This is the first study to show that mungbean water extract increased cellular glucose uptake and improved insulin sensitivity of insulin-resistant HepG2 cells through PTP-1B inhibition and modulating the expression of genes related to glucose metabolism. This suggests that mungbean water extract has the potential to be a functional ingredient for diabetes.


2020 ◽  
Vol 17 (12) ◽  
pp. 939-943
Author(s):  
Toshiro Noshita ◽  
Yusuke Kakizoe ◽  
Satoshi Tanabe ◽  
Hidekazu Ouchi ◽  
Akihiro Tai

Extracts of Carolina jasmine (Gelsemium sempervirens (L.) J.St.-Hil.) petals were evaluated in vitro for inhibition activity against protein tyrosine phosphatase 1B (PTP1B). The principle active agent was also isolated from the extract and identified as ursolic acid (1). This is the first report of ursolic acid from G. sempervirens and of PTP1B-inhibiting activity in the genus Gelsemium.


Sign in / Sign up

Export Citation Format

Share Document