scholarly journals Transcriptomic Analysis of Betula halophila in Response to Salt Stress

2018 ◽  
Vol 19 (11) ◽  
pp. 3412 ◽  
Author(s):  
Fenjuan Shao ◽  
Lisha Zhang ◽  
Iain Wilson ◽  
Deyou Qiu

Soil salinization is a matter of concern worldwide. It can eventually lead to the desertification of land and severely damage local agricultural production and the ecological environment. Betula halophila is a tree with high salt tolerance, so it is of importance to understand and discover the salt responsive genes of B. halophila for breeding salinity resistant varieties of trees. However, there is no report on the transcriptome in response to salt stress in B. halophila. Using Illumina sequencing platform, approximately 460 M raw reads were generated and assembled into 117,091 unigenes. Among these unigenes, 64,551 unigenes (55.12%) were annotated with gene descriptions, while the other 44.88% were unknown. 168 up-regulated genes and 351 down-regulated genes were identified, respectively. These Differentially Expressed Genes (DEGs) involved in multiple pathways including the Salt Overly Sensitive (SOS) pathway, ion transport and uptake, antioxidant enzyme, ABA signal pathway and so on. The gene ontology (GO) enrichments suggested that the DEGs were mainly involved in a plant-type cell wall organization biological process, cell wall cellular component, and structural constituent of cell wall molecular function. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment showed that the top-four enriched pathways were ‘Fatty acid elongation’, ‘Ribosome’, ‘Sphingolipid metabolism’ and ‘Flavonoid biosynthesis’. The expression patterns of sixteen DEGs were analyzed by qRT-PCR to verify the RNA-seq data. Among them, the transcription factor AT-Hook Motif Nuclear Localized gene and dehydrins might play an important role in response to salt stress in B. halophila. Our results provide an important gene resource to breed salt tolerant plants and useful information for further elucidation of the molecular mechanism of salt tolerance in B. halophila.

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1312
Author(s):  
Jia Liu ◽  
Weicong Qi ◽  
Haiying Lu ◽  
Hongbo Shao ◽  
Dayong Zhang

Salt tolerance is an important trait in soybean cultivation and breeding. Plant responses to salt stress include physiological and biochemical changes that affect the movement of water across the plasma membrane. Plasma membrane intrinsic proteins (PIPs) localize to the plasma membrane and regulate the water and solutes flow. In this study, quantitative real-time PCR and yeast two-hybridization were engaged to analyze the early gene expression profiles and interactions of a set of soybean PIPs (GmPIPs) in response to salt stress. A total of 20 GmPIPs-encoding genes had varied expression profiles after salt stress. Among them, 13 genes exhibited a downregulated expression pattern, including GmPIP1;6, the constitutive overexpression of which could improve soybean salt tolerance, and its close homologs GmPIP1;7 and 1;5. Three genes showed upregulated patterns, including the GmPIP1;6 close homolog GmPIP1;4, when four genes with earlier increased and then decreased expression patterns. GmPIP1;5 and GmPIP1;6 could both physically interact strongly with GmPIP2;2, GmPIP2;4, GmPIP2;6, GmPIP2;8, GmPIP2;9, GmPIP2;11, and GmPIP2;13. Definite interactions between GmPIP1;6 and GmPIP1;7 were detected and GmPIP2;9 performed homo-interaction. The interactions of GmPIP1;5 with GmPIP2;11 and 2;13, GmPIP1;6 with GmPIP2;9, 2;11 and GmPIP2;13, and GmPIP2;9 with itself were strengthened upon salt stress rather than osmotic stress. Taken together, we inferred that GmPIP1 type and GmPIP2 type could associate with each other to synergistically function in the plant cell; a salt-stress environment could promote part of their interactions. This result provided new clues to further understand the soybean PIP–isoform interactions, which lead to potentially functional homo- and heterotetramers for salt tolerance.


2019 ◽  
Author(s):  
Wenbin Ye ◽  
Taotao Wang ◽  
Wei Wei ◽  
Shuaitong Lou ◽  
Faxiu Lan ◽  
...  

ABSTRACTSpartina alterniflora (Spartina) is the only halophyte in the salt marsh. However, the molecular basis of its high salt tolerance remains elusive. In this study, we used PacBio full-length single molecule long-read sequencing and RNA-seq to elucidate the transcriptome dynamics of high salt tolerance in Spartina by salt-gradient experiments (0, 350, 500 and 800 mM NaCl). We systematically analyzed the gene expression diversity and deciphered possible roles of ion transporters, protein kinases and photosynthesis in salt tolerance. Moreover, the co-expression network analysis revealed several hub genes in salt stress regulatory networks, including protein kinases such as SaOST1, SaCIPK10 and three SaLRRs. Furthermore, high salt stress affected the gene expression of photosynthesis through down-regulation at the transcription level and alternative splicing at the post-transcriptional level. In addition, overexpression of two Spartina salt-tolerant genes SaHSP70-I and SaAF2 in Arabidopsis significantly promoted the salt tolerance of transgenic lines. Finally, we built the SAPacBio website for visualizing the full-length transcriptome sequences, transcription factors, ncRNAs, salt-tolerant genes, and alternative splicing events in Spartina. Overall, this study sheds light on the high salt tolerance mechanisms of monocotyledonous-halophyte and demonstrates the potential of Spartina genes for engineering salt-tolerant plants.


2020 ◽  
Vol 21 (3) ◽  
pp. 1165
Author(s):  
Jiayu Luan ◽  
Jingxiang Dong ◽  
Xin Song ◽  
Jing Jiang ◽  
Huiyu Li

Salt stress inhibits normal plant growth and development by disrupting cellular water absorption and metabolism. Therefore, understanding plant salt tolerance mechanisms should provide a theoretical basis for developing salt-resistant varieties. Here, we cloned ThTrx5 from Tamarix hispida, a salt-resistant woody shrub, and generated ThTrx5-overexpressing transgenic Arabidopsis thaliana lines. Under NaCl stress, the germination rate of overexpressing ThTrx5 lines was significantly increased relative to that of the nontransgenic line; under salt stress, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione levels and root length and fresh weight values of transgenic ThTrx5 plants were significantly greater than corresponding values for wild-type plants. Moreover, with regard to the transcriptome, comparison of differential gene expression of transgenic versus nontransgenic lines at 0 h and 3 h of salt stress exposure revealed 500 and 194 differentially expressed genes (DEGs), respectively, that were mainly functionally linked to catalytic activity and binding process. Pull-down experiments showed that ThTrx bound 2-Cys peroxiredoxin BAS1-like protein that influences stress response-associated redox, hormone signal transduction, and transcription factor functions. Therefore, this work provides important insights into ThTrx5 mechanisms that promote salt tolerance in plants.


2021 ◽  
Vol 22 (21) ◽  
pp. 11897
Author(s):  
Ming Li ◽  
Zhiyong Wu ◽  
Hong Gu ◽  
Dawei Cheng ◽  
Xizhi Guo ◽  
...  

Kiwifruit (Actinidia chinensis Planch) is suitable for neutral acid soil. However, soil salinization is increasing in kiwifruit production areas, which has adverse effects on the growth and development of plants, leading to declining yields and quality. Therefore, analyzing the salt tolerance regulation mechanism can provide a theoretical basis for the industrial application and germplasm improvement of kiwifruit. We identified 120 NAC members and divided them into 13 subfamilies according to phylogenetic analysis. Subsequently, we conducted a comprehensive and systematic analysis based on the conserved motifs, key amino acid residues in the NAC domain, expression patterns, and protein interaction network predictions and screened the candidate gene AvNAC030. In order to study its function, we adopted the method of heterologous expression in Arabidopsis. Compared with the control, the overexpression plants had higher osmotic adjustment ability and improved antioxidant defense mechanism. These results suggest that AvNAC030 plays a positive role in the salt tolerance regulation mechanism in kiwifruit.


Author(s):  
Yongfan Yu ◽  
Min Zhang ◽  
Jianyuan Feng ◽  
Sujing Sun ◽  
Peng Zhou ◽  
...  

AbstractDetermining the responses of candidate plants to salt stress is a prerequisite for selecting and breeding suitable plants with high salt tolerance to grow in coastal mudflat areas with high salinity. Here, 2-year cutting seedlings of Ilex purpurea Hassk. (local species) and I. integra Thunb. (introduced species) were grown in pots in a glasshouse and irrigated with a Hoagland-NaCl solution at 0, 24, and 48 h. Root samples were collected at 0, 1, 6, 24, and 72 h, and concentration of Na+ ion; content of proline, soluble carbohydrate, malondialdehyde (MDA), H2O2 and ascorbate; and activity of three key antioxidative enzymes were measured. Roots of I. integra accumulated relatively less Na+ and had less membrane lipid peroxidation and H2O2 during salt stress, thus indicating a relatively higher salt tolerance than roots of I. purpurea. Values for ascorbate content and antioxidant enzymatic activity suggest that the antioxidant ascorbate and antioxidative catalase may play substantial roles for scavenging reactive oxygen species in I. integra roots during salt treatment. Thus, I. integra is apparently more suitable for growing in local highly saline coastal mudflats.


2021 ◽  
Vol 25 (03) ◽  
pp. 591-600
Author(s):  
Huaguang Hu

Zoysia macrostachya Franch. et Sav. is a halophyte with very strong tolerance to salinity, which can serve as an alternative turfgrass for landscaping in saline-alkali land and provide the salt-tolerance genes for turfgrass breeding. To further illustrate the salt-tolerance mechanisms in this species at molecular level, the roots transcriptome of Z. macrostachya was investigated under salt stress using the Illumina sequencing platform. Altogether 47,325 unigenes were assembled, among which, 32,542 (68.76%) were annotated, and 87.61% clean reads were mapped to the unigenes. Specifically, 14,558 unigenes were shown to be the differentially expressed genes (DEGs) following exposure to 710 mM NaCl stress compared with control, including 7972 up-regulated and 6586 down-regulated DEGs. Among these DEGs, 24 were associated with the reactive oxygen species (ROS) scavenging system, 61 were found to be related to K+ and Na+ transportation, and 16 were related to the metabolism of osmotic adjustment substances. Additionally, 2327 DEGs that encoded the transcription factors (TFs) were also identified. The expression profiles for 10 DEGs examined through quantitative real-time PCR conformed to the individual alterations of transcript abundance verified through RNA-Seq. Taken together, results of transcriptome analysis in this study provided useful insights for salt-tolerance molecular mechanisms of Z. macrostachya. Furthermore, these DEGs under salt stress provided important clues for future salt-tolerance genes cloning of Z. macrostachya. © 2021 Friends Science Publishers


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojin Lei ◽  
Bing Tan ◽  
Zhongyuan Liu ◽  
Jing Wu ◽  
Jiaxin Lv ◽  
...  

The CONSTANS-LIKE (COL) transcription factor has been reported to play important roles in regulating plant flowering and the response to abiotic stress. To clone and screen COL genes with excellent salt tolerance from the woody halophyte Tamarix hispida, 8 ThCOL genes were identified in this study. The expression patterns of these genes under different abiotic stresses (high salt, osmotic, and heavy metal) and abscisic acid (ABA) treatment were detected using quantitative real-time PCR (qRT-PCR). The expression levels of 8 ThCOL genes changed significantly after exposure to one or more stresses, indicating that these genes were all stress-responsive genes and may be involved in the stress resistance response of T. hispida. In particular, the expression level of ThCOL2 changed significantly at most time points in the roots and leaves of T. hispida under salt stress and after ABA treatments, which may play an important role in the response process of salt stress through a mechanism dependent on the ABA pathway. The recombinant vectors pROKII–ThCOL2 and pFGC5941–ThCOL2 were constructed for the transient transformation of T. hispida, and the transient infection of T. hispida with the pROKII empty vector was used as the control to further verify whether the ThCOL2 gene was involved in the regulation of the salt tolerance response of T. hispida. Overexpression of the ThCOL2 gene in plants under 150 mM NaCl stress increased the ability of transgenic T. hispida cells to remove reactive oxygen species (ROS) by regulating the activity of protective enzymes and promoting a decrease in the accumulation of O2– and H2O2, thereby reducing cell damage or cell death and enhancing salt tolerance. The ThCOL2 gene may be a candidate gene associated with excellent salt tolerance. Furthermore, the expression levels of some genes related to the ABA pathway were analyzed using qRT-PCR. The results showed that the expressions of ThNCED1 and ThNCED4 were significantly higher, and the expressions of ThNCED3, ThZEP, and ThAAO3 were not significantly altered in OE compared with CON under normal conditions. But after 24 h of salt stress, the expressions of all five studied genes all were lower than the normal condition. In the future, the downstream genes directly regulated by the ThCOL2 transcription factor will be searched and identified to analyze the salt tolerance regulatory network of ThCOL2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianjie Sun ◽  
Nan Ma ◽  
Caiqing Wang ◽  
Huifen Fan ◽  
Mengxuan Wang ◽  
...  

Salt stress caused by soil salinization, is one of the main factors that reduce soybean yield and quality. A large number of genes have been found to be involved in the regulation of salt tolerance. In this study, we characterized a soybean sodium/hydrogen exchanger gene GmNHX5 and revealed its functional mechanism involved in the salt tolerance process in soybean. GmNHX5 responded to salt stress at the transcription level in the salt stress-tolerant soybean plants, but not significantly changed in the salt-sensitive ones. GmNHX5 was located in the Golgi apparatus, and distributed in new leaves and vascular, and was induced by salt treatment. Overexpression of GmNHX5 improved the salt tolerance of hairy roots induced by soybean cotyledons, while the opposite was observed when GmNHX5 was knockout by CRISPR/Cas9. Soybean seedlings overexpressing GmNHX5 also showed an increased expression of GmSOS1, GmSKOR, and GmHKT1, higher K+/Na+ ratio, and higher viability when exposed to salt stress. Our findings provide an effective candidate gene for the cultivation of salt-tolerant germplasm resources and new clues for further understanding of the salt-tolerance mechanism in plants.


2020 ◽  
Author(s):  
Yantong Zhou ◽  
Xiaoxia Tian ◽  
Yong Zhang ◽  
Peichun Mao ◽  
Mingli Zheng ◽  
...  

Abstract As an important nutrient, K+ plays a crucial role in plant stress resistance. It has been reported that the stelar K+ outward rectifying channel (SKOR) is involved in loading K+ into the xylem for its transport from roots to shoots. Elytrigia elongata is a perennial, sparsely distributed, rhizome-type herbaceous plant belonging to the wheatgrass family; it has high salt tolerance. Here, we isolated EeSKOR from decaploid E. elongata and investigated its function in transgenic tobacco. The results showed that EeSKOR was mainly expressed in the roots and was up-regulated with increasing salinity and drought intensity. Overexpression of EeSKOR in plants exposed to salt stress enhanced growth performance, increased SOD activity and chlorophyll content, significantly reduced H2O2 and MDA content, reduced Na+ concentration, and increased K+ concentration in transgenic tobacco plants compared with wild-type (WT) and null vector (Vector) plants. Our findings suggest that transgenic plants overexpressing EeSKOR could enhance K+ transport from the roots to the aboveground parts to maintain K+ steady-state in the aboveground under conditions of salt stress, thereby enhancing tobacco salt tolerance.


2018 ◽  
Vol 115 (51) ◽  
pp. 13123-13128 ◽  
Author(s):  
Chunzhao Zhao ◽  
Omar Zayed ◽  
Zheping Yu ◽  
Wei Jiang ◽  
Peipei Zhu ◽  
...  

The perception and relay of cell-wall signals are critical for plants to regulate growth and stress responses, but the underlying mechanisms are poorly understood. We found that the cell-wall leucine-rich repeat extensins (LRX) 3/4/5 are critical for plant salt tolerance in Arabidopsis. The LRXs physically associate with the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23, which in turn interact with the plasma membrane-localized receptor-like protein kinase FERONIA (FER). The lrx345 triple mutant as well as fer mutant plants display retarded growth and salt hypersensitivity, which are mimicked by overexpression of RALF22/23. Salt stress promotes S1P protease-dependent release of mature RALF22 peptides. Treatment of roots with mature RALF22/23 peptides or salt stress causes the internalization of FER. Our results suggest that the LRXs, RALFs, and FER function as a module to transduce cell-wall signals to regulate plant growth and salt stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document