cellular water
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 2)

Stresses ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 285-304
Author(s):  
Bikash Adhikari ◽  
Omolayo J. Olorunwa ◽  
Jeff C. Wilson ◽  
T. Casey Barickman

Salt stress (SS) refers to excessive soluble salt concentrations in the plant root zone. SS also causes cellular water deficits, ion toxicity, and oxidative stress in plants, all of which can cause growth inhibition, molecular damage, and even plant mortality. Lettuce (Lactuca sativa L.) has a threshold electrical conductivity of 1.3–2.0 dS/m. Thus, this research focused on physiological, morphological, and biochemical attributes in multiple lettuce genotypes under SS compared to plants grown under control conditions. The experiment was arranged in a randomized complete block design with four replications. One month after planting, the salt treatment was applied at the rate of 100 millimoles (mM). The 0 mM salt in water treatment was considered the control. A significant effect of SS on different morphological and physiological traits was observed in one-month-old lettuce plants. PI 212099, Buttercrunch-1, and PI 171676 were highly salt-tolerant. Genotypes with high salt tolerance usually had poor growth potential under control conditions. This suggests that the morphological and physiological response of 38 lettuce cultivars towards SS is genotype dependent. Identifying SS’s physiological, morphological, and biochemical attributes in lettuce may help plant-breeders develop salt-tolerant lettuce genotypes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Maria Rosaria Ruggiero ◽  
Simona Baroni ◽  
Valeria Bitonto ◽  
Roberto Ruiu ◽  
Smeralda Rapisarda ◽  
...  

This study aims to explore whether the water exchange rate constants in tumor cells can act as a hallmark of pathology status and a reporter of therapeutic outcomes. It has been shown, using 4T1 cell cultures and murine allografts, that an early assessment of the therapeutic effect of doxorubicin can be detected through changes in the cellular water efflux rate constant kio. The latter has been estimated by analyzing the magnetization recovery curve in standard NMR T1 measurements when there is a marked difference in the proton relaxation rate constants (R1) between the intra- and the extra-cellular compartments. In cellular studies, T1 measurements were carried out on a relaxometer working at 0.5 T, and the required difference in R1 between the two compartments was achieved via the addition of a paramagnetic agent into the extracellular compartment. For in-vivo experiments, the large difference in the R1 values of the two-compartments was achieved when the T1 measurements were carried out at low magnetic field strengths. This task was accomplished using a Fast Field Cycling (FFC) relaxometer that was properly modified to host a mouse in its probe head. The decrease in kio upon the administration of doxorubicin is the result of the decreased activity of Na+/K+-ATPase, as shown in an independent test on the cellular uptake of Rb ions. The results reported herein suggest that kio can be considered a non-invasive, early and predictive biomarker for the identification of responsive patients immediately from the first doxorubicin treatment.


2021 ◽  
Author(s):  
Valentina E. Yurinskaya ◽  
Alexey A Vereninov

The work provides a modern mathematical description of animal cell electrochemical system under a balanced state and during the transition caused by an increase in external osmolarity, considering all the main ionic pathways in the cell membrane: the sodium pump, K+, Na+, Cl- electroconductive channels and cotransporters NC, KC, and NKCC. The description is applied to experimental data obtained on U937 cells cultured in suspension, which allows the required assays to be performed, including determination of cell water content using buoyant density, cell ion content using flame photometry, and optical methods using flow cytometry. The study of these cells can serve as a useful model for understanding the general mechanisms of regulation of cellular water and ionic balance, which cannot be properly analyzed in many important practical cases, such as ischemic disturbance of cellular ionic and water balance, when cells cannot be isolated. An essential part of the results is the developed software supplied with an executable file, which allows researchers with no programming experience to calculate unidirectional fluxes of monovalent ions through separate pathways and ion-electrochemical gradients that move ions through them, which is important for studying the functional expression of channels and transporters. It is shown how the developed approach is used to reveal changes in channels and transporters underlying the RVI and AVD responses to the hyperosmolar medium in the studied living U937 cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ruoyi Lin ◽  
Jiexuan Zheng ◽  
Lin Pu ◽  
Zhengfeng Wang ◽  
Qiming Mei ◽  
...  

Abstract Background Canavalia rosea (Sw.) DC. (bay bean) is an extremophile halophyte that is widely distributed in coastal areas of the tropics and subtropics. Seawater and drought tolerance in this species may be facilitated by aquaporins (AQPs), channel proteins that transport water and small molecules across cell membranes and thereby maintain cellular water homeostasis in the face of abiotic stress. In C. rosea, AQP diversity, protein features, and their biological functions are still largely unknown. Results We describe the action of AQPs in C. rosea using evolutionary analyses coupled with promoter and expression analyses. A total of 37 AQPs were identified in the C. rosea genome and classified into five subgroups: 11 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, 11 Nod26-like intrinsic proteins, 4 small and basic intrinsic proteins, and 1 X-intrinsic protein. Analysis of RNA-Seq data and targeted qPCR revealed organ-specific expression of aquaporin genes and the involvement of some AQP members in adaptation of C. rosea to extreme coral reef environments. We also analyzed C. rosea sequences for phylogeny reconstruction, protein modeling, cellular localizations, and promoter analysis. Furthermore, one of PIP1 gene, CrPIP1;5, was identified as functional using a yeast expression system and transgenic overexpression in Arabidopsis. Conclusions Our results indicate that AQPs play an important role in C. rosea responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role AQPs play in mediating C. rosea adaptation to extreme environments, but also improve our knowledge of plant aquaporin evolution more generally.


2021 ◽  
Author(s):  
Zachary G Welsh

Theoretical models for food drying commonly utilize an effective diffusivity solved through curve fitting based on experimental data. This creates models with limited predictive capabilities. Multiscale modeling is one approach which can help transition to a more physics-based model minimizing the empirical information required while improving a model’s predictive capabilities. However, to enable an accurate scaling operation, multiscale models require diffusivity at a fine scale (microscale). Measuring these properties is experimentally costly and time consuming as they are often temperature and/or moisture dependent. This research conducts an inverse analysis on a multiscale homogenization food drying model to deduce the temporal diffusivity of intracellular water. A representation of the real cellular water breakdown was considered and appropriate assumptions to represent its cellular heterogeneity, in relation to time, were investigated. The work uncovered that a linear decrease in intracellular water content could be assumed and thus a function for its diffusivity was developed. The proposed function is in terms of sample temperature and intracellular water content opening the possibilities to be applied to various food materials.


2021 ◽  
Author(s):  
Hiroaki Ishida ◽  
Hans J Vogel ◽  
Alex C Conner ◽  
Philip Kitchen ◽  
Roslyn M Bill ◽  
...  

Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4 that occurs in response to osmotically-driven changes in cell swelling in the central nervous system. The objective of the present study was to assess the CaM-binding properties of AQP4 in detail. Inspection of AQP4 revealed two putative CaM-binding domains (CBDs) in the cytoplasmic N- and C-terminal regions, respectively. The Ca2+-dependent CaM-binding properties of synthetic and recombinant AQP4 CBD peptides were assessed using fluorescence spectroscopy, isothermal titration calorimetry, and two-dimensional 1H, 15N-HSQC NMR with 15N-labeled CaM. The N-terminal CBD peptide of AQP4 predominantly interacted with the N-lobe of CaM with a 1:1 binding ratio and a Kd of 3.4 μM. CaM bound two C-terminal AQP4 peptides with interactions observed for both the C- and N-lobes of CaM (Kd1: 3.6 μM, Kd2: 113.6 μM, respectively). A recombinant AQP4 protein domain (rAQP4ct, containing the entire cytosolic C-terminal domain sequence) bound CaM in a 1:1 binding mode with a Kd of 6.1 μM. A ternary bridging complex could be generated with the N- and C-lobes of CaM interacting simultaneously with the N- and C-terminal CBD peptides. These data suggest that this unique adapter protein binding mode of CaM and AQP4 may be an important regulatory mechanism for the vesicular trafficking of AQP4.


2021 ◽  
Author(s):  
Astrid L Radermacher ◽  
Brett Williams ◽  
Arash Iranzadeh ◽  
Halford Dace ◽  
Sagadevan Mundree ◽  
...  

Vegetative desiccation tolerance, the ability to survive loss of over 90% of cellular water, is an extremely rare trait in Angiosperms. Xerophyta schlechteri survives such extreme water deficit by entering prolonged quiescence and suppressing drought-induced senescence in most of the leaf area, except the apical tip. Information on the molecular regulation of senescence in such plants is scarce and this is the first study to investigate such regulation in senescing and non-senescing tissues of the same leaf. Genome-wide RNA sequencing enabled comparison of senescent and non-senescent tissues during desiccation and early rehydration, establishment of the water content range in which senescence is initiated and identification of molecular mechanisms employed to bring about cellular death. Senescence-associated genes (XsSAG) specific to this species were identified and two potential regulatory sites were enriched in regions upstream to these XsSAGs, allowing us to create a model of senescence regulation in X. schlechteri based on homology with known Arabidopsis senescence regulators. We hypothesise that desiccation-driven senescence occurs as a result of a convergence of signals around MAPK6 to trigger WRKY-mediated ethylene synthesis and XsSAG expression, not unlike aging and stress-related senescence in Arabidopsis, but at remarkably lower water contents (<35% RWC).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C. Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M. Godfrey ◽  
...  

AbstractBioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.38 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Nipuna Weerasinghe ◽  
Steven Fried ◽  
Andrey Struts ◽  
Suchithranga Perera ◽  
Michael Brown

2021 ◽  
Author(s):  
Jaz Lyons-Reid ◽  
Leigh C Ward ◽  
Mya-Thway Tint ◽  
Timothy Kenealy ◽  
Keith M Godfrey ◽  
...  

Abstract Bioelectrical impedance techniques are easy to use and portable tools for assessing body composition. While measurements vary according to standing vs supine position in adults, and fasting and bladder voiding have been proposed as additional important influences, these have not been assessed in young children. Therefore, the influence of position, fasting, and voiding on bioimpedance measurements was examined in children. Bioimpedance measurements (ImpediMed SFB7) were made in 50 children (3.5 years). Measurements were made when supine and twice when standing (immediately on standing and after four minutes). Impedance and body composition were compared between positions, and the effect of fasting and voiding was assessed. Impedance varied between positions, but body composition parameters other than fat mass (total body water, intra- and extra-cellular water, fat-free mass) differed by less than 5%. There were no differences according to time of last meal or void. Equations were developed to allow standing measurements of fat mass to be combined with supine measurements. In early childhood, it can be difficult to meet requirements for fasting, voiding, and lying supine prior to measurement. This study provides evidence to enable standing and supine bioimpedance measurements to be combined in cohorts of young children.


Sign in / Sign up

Export Citation Format

Share Document