scholarly journals PMN-MDSCs Enhance CTC Metastatic Properties through Reciprocal Interactions via ROS/Notch/Nodal Signaling

2019 ◽  
Vol 20 (8) ◽  
pp. 1916 ◽  
Author(s):  
Marc L. Sprouse ◽  
Thomas Welte ◽  
Debasish Boral ◽  
Haowen N. Liu ◽  
Wei Yin ◽  
...  

Intratumoral infiltration of myeloid-derived suppressor cells (MDSCs) is known to promote neoplastic growth by inhibiting the tumoricidal activity of T cells. However, direct interactions between patient-derived MDSCs and circulating tumors cells (CTCs) within the microenvironment of blood remain unexplored. Dissecting interplays between CTCs and circulatory MDSCs by heterotypic CTC/MDSC clustering is critical as a key mechanism to promote CTC survival and sustain the metastatic process. We characterized CTCs and polymorphonuclear-MDSCs (PMN-MDSCs) isolated in parallel from peripheral blood of metastatic melanoma and breast cancer patients by multi-parametric flow cytometry. Transplantation of both cell populations in the systemic circulation of mice revealed significantly enhanced dissemination and metastasis in mice co-injected with CTCs and PMN-MDSCs compared to mice injected with CTCs or MDSCs alone. Notably, CTC/PMN-MDSC clusters were detected in vitro and in vivo either in patients’ blood or by longitudinal monitoring of blood from animals. This was coupled with in vitro co-culturing of cell populations, demonstrating that CTCs formed physical clusters with PMN-MDSCs; and induced their pro-tumorigenic differentiation through paracrine Nodal signaling, augmenting the production of reactive oxygen species (ROS) by PMN-MDSCs. These findings were validated by detecting significantly higher Nodal and ROS levels in blood of cancer patients in the presence of naïve, heterotypic CTC/PMN-MDSC clusters. Augmented PMN-MDSC ROS upregulated Notch1 receptor expression in CTCs through the ROS-NRF2-ARE axis, thus priming CTCs to respond to ligand-mediated (Jagged1) Notch activation. Jagged1-expressing PMN-MDSCs contributed to enhanced Notch activation in CTCs by engagement of Notch1 receptor. The reciprocity of CTC/PMN-MDSC bi-directional paracrine interactions and signaling was functionally validated in inhibitor-based analyses, demonstrating that combined Nodal and ROS inhibition abrogated CTC/PMN-MDSC interactions and led to a reduction of CTC survival and proliferation. This study provides seminal evidence showing that PMN-MDSCs, additive to their immuno-suppressive roles, directly interact with CTCs and promote their dissemination and metastatic potency. Targeting CTC/PMN-MDSC heterotypic clusters and associated crosstalks can therefore represent a novel therapeutic avenue for limiting hematogenous spread of metastatic disease.

2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.


Oncogene ◽  
2021 ◽  
Author(s):  
Francesco Pantano ◽  
Martine Croset ◽  
Keltouma Driouch ◽  
Natalia Bednarz-Knoll ◽  
Michele Iuliani ◽  
...  

AbstractBone metastasis remains a major cause of mortality and morbidity in breast cancer. Therefore, there is an urgent need to better select high-risk patients in order to adapt patient’s treatment and prevent bone recurrence. Here, we found that integrin alpha5 (ITGA5) was highly expressed in bone metastases, compared to lung, liver, or brain metastases. High ITGA5 expression in primary tumors correlated with the presence of disseminated tumor cells in bone marrow aspirates from early stage breast cancer patients (n = 268; p = 0.039). ITGA5 was also predictive of poor bone metastasis-free survival in two separate clinical data sets (n = 855, HR = 1.36, p = 0.018 and n = 427, HR = 1.62, p = 0.024). This prognostic value remained significant in multivariate analysis (p = 0.028). Experimentally, ITGA5 silencing impaired tumor cell adhesion to fibronectin, migration, and survival. ITGA5 silencing also reduced tumor cell colonization of the bone marrow and formation of osteolytic lesions in vivo. Conversely, ITGA5 overexpression promoted bone metastasis. Pharmacological inhibition of ITGA5 with humanized monoclonal antibody M200 (volociximab) recapitulated inhibitory effects of ITGA5 silencing on tumor cell functions in vitro and tumor cell colonization of the bone marrow in vivo. M200 also markedly reduced tumor outgrowth in experimental models of bone metastasis or tumorigenesis, and blunted cancer-associated bone destruction. ITGA5 was not only expressed by tumor cells but also osteoclasts. In this respect, M200 decreased human osteoclast-mediated bone resorption in vitro. Overall, this study identifies ITGA5 as a mediator of breast-to-bone metastasis and raises the possibility that volociximab/M200 could be repurposed for the treatment of ITGA5-positive breast cancer patients with bone metastases.


2021 ◽  
Author(s):  
Xiao Tong ◽  
Jiani Xing ◽  
Haizhou Liu ◽  
Shunheng Zhou ◽  
Yue Huang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) is widely described as a class of RNA longer than 200 nucleotides without encoding capability. But recent years, more and more open reading frames (ORFs) have been found in lncRNAs which indicate they have coding capacity. But the mechanisms of the encoding products in cancer are mostly unknown. We have previously shown lncRNA HCP5 is an oncogene in triple negative breast cancer (TNBC), and the aim of the current study was to investigate if lncRNA HCP5 encoding protein promotes TNBC by regulating ferroptosis. Methods We use bioinformatics to predict coding capacity. Molecular biology experiments and the xenograft assay in nude mice to study the mechanism of lncRNA HCP5 encoding protein. And the protein expression was evaluated in a tissue microarray of 140 invasive breast tumors and 45 pared precancerous breast tissues. Association between the protein expression and clinicopathologic features of breast cancer patients was analyzed. Results In this study, we identify that ORF in lncRNA HCP5 can encode a conserved protein with 132-amino acid. The protein, which is named HCP5-132aa, promotes TNBC growth. Mechanistically, the HCP5-132aa regulates GPX4 expression and lipid ROS level through ferroptosis pathway to promote TNBC progression. HCP5-132aa ORF knockdown synergizes with ferroptosis activators in vitro and in vivo. Breast cancer patients with high levels of HCP5-132aa have poorer prognosis. Conclusions Our study indicates that overexpression of lncRNA HCP5 encoding protein is a critical oncogenic event in TNBC. Our findings uncover a regulatory mechanism of ferroptosis in TNBC orchestrated by a protein encoded by an lncRNA.


2016 ◽  
Vol 130 (24) ◽  
pp. 2267-2276 ◽  
Author(s):  
Dong-xu He ◽  
Feng Gu ◽  
Jian Wu ◽  
Xiao-Ting Gu ◽  
Chun-Xiao Lu ◽  
...  

Chemotherapeutic response is critical for the successful treatment and good prognosis in cancer patients. In this study, we analysed the gene expression profiles of preoperative samples from oestrogen receptor (ER)-negative breast cancer patients with different responses to taxane-anthracycline-based (TA-based) chemotherapy, and identified a group of genes that was predictive. Pregnancy specific beta-1-glycoprotein 1 (PSG1) played a central role within signalling pathways of these genes. Inhibiting PSG1 can effectively reduce chemoresistance via a transforming growth factor-β (TGF-β)-related pathway in ER-negative breast cancer cells. Drug screening then identified dicumarol (DCM) to target the PSG1 and inhibit chemoresistance to TA-based chemotherapy in vitro, in vivo, and in clinical samples. Taken together, this study highlights PSG1 as an important mediator of chemoresistance, whose effect could be diminished by DCM.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jiahui Mao ◽  
Lingxia Wang ◽  
Junying Wu ◽  
Yichun Wang ◽  
Huiyan Wen ◽  
...  

miRNAs play a crucial part in multiple biological processes of cell proliferation, migration, apoptosis, and chemoresistance. In cancer, miRNAs can be divided into oncogenes or tumor suppressors on the basis of their functions in the carcinogenic process. The purpose of this study was to explore the roles and clinical diagnostic value of miR-370-3p in breast cancer. Our results demonstrated that miR-370-3p significantly promoted proliferation, metastasis, and stemness of breast cancer in vitro and in vivo. In particular, clinical data revealed that high expression of serum miR-370-3p and exosomal miR-370-3p from breast cancer patients was remarkably correlated with lymphatic metastasis and tumor node metastasis (TNM) stages. Mechanistically, miR-370-3p inhibited FBLN5 expression and activated the NF-κB signaling pathway to promote breast cancer cell proliferation, migration, and stemness. FBLN5 expression was significantly decreased in breast cancer cells and tumor tissues of breast cancer patients. Our research identified that miR-370-3p promoted breast cancer progression by inhibiting FBLN5 expression and activating the NF-κB signaling pathway. Serum exosomal miR-370-3p would provide a potential biomarker for the diagnosis of breast cancer.


1998 ◽  
Vol 7 (1) ◽  
pp. 1-9
Author(s):  
Madhusudan V. Peshwa ◽  
Claudia Bemke ◽  
Marc Dupuis ◽  
Smriti K. Kundu ◽  
Edgar G. Engleman ◽  
...  

Dendritic ceils (DC) are potent antigen-presenting cells (APC) capable of inducing strong T-cell–mediated immunity. Infusion of lymphoma-specific antigen-loaded autologous DC has been demonstrated to result in the generation of antigen-specific immunity and reduction in tumor burden in B-cell lymphoma patients. Cellular immunotherapy employing antigen-loaded DC could have a potential therapeutic impact in tumors and viral infections, including HIV infection. However, DC in HIV-infected individuals and breast cancer patients are believed to be functionally defective. Therefore, the potential of using allogeneic DC offers significant implications for DC immunotherapy in AIDS and immunocompromised cancer patients. To explore the potential of allogeneic DC therapy in vivo, we tested the ability of allogeneic DC to generate primary peptide-specific CD8+ cytotoxic T-lymphocyte (CTL) responses in vitro. Our results indicate that DC from HLA class I-matched individuals elicit primary immune responses in vitro using viral peptides as naive antigens. A primary peptide-specific immune response could also be detected even when only one HLA allele (HLA-A*0201) was matched between the allogeneic DC and T-lymphocytes. The ability to generate primary peptide-specific responses in vitro is strongly indicative of the in vivo therapeutic potential of allogeneic DC.


Author(s):  
Xiaoqing Sun ◽  
Zhenyu He ◽  
Ling Guo ◽  
Caiqin Wang ◽  
Chuyong Lin ◽  
...  

Abstract Background Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. Methods In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients’ samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. Results ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-β receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. Conclusion Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document