scholarly journals In Vitro Entero-Capillary Barrier Exhibits Altered Inflammatory and Exosomal Communication Pattern after Exposure to Silica Nanoparticles

2019 ◽  
Vol 20 (13) ◽  
pp. 3301 ◽  
Author(s):  
Jennifer Y. Kasper ◽  
M. Iris Hermanns ◽  
Annette Kraegeloh ◽  
W. Roth ◽  
C. James Kirkpatrick ◽  
...  

The intestinal microvasculature (iMV) plays multiple pathogenic roles during chronic inflammatory bowel disease (IBD). The iMV acts as a second line of defense and is, among other factors, crucial for the innate immunity in the gut. It is also the therapeutic location in IBD targeting aggravated leukocyte adhesion processes involving ICAM-1 and E-selectin. Specific targeting is stressed via nanoparticulate drug vehicles. Evaluating the iMV in enterocyte barrier models in vitro could shed light on inflammation and barrier-integrity processes during IBD. Therefore, we generated a barrier model by combining the enterocyte cell line Caco-2 with the microvascular endothelial cell line ISO-HAS-1 on opposite sides of a transwell filter-membrane under culture conditions which mimicked the physiological and inflamed conditions of IBD. The IBD model achieved a significant barrier-disruption, demonstrated via transepithelial-electrical resistance (TER), permeability-coefficient (Papp) and increase of sICAM sE-selectin and IL-8. In addition, the impact of a prospective model drug-vehicle (silica nanoparticles, aSNP) on ongoing inflammation was examined. A decrease of sICAM/sE-selectin was observed after aSNP-exposure to the inflamed endothelium. These findings correlated with a decreased secretion of ICAM/E-selectin bearing exosomes/microvesicles, as evaluated via ELISA. Our findings indicate that aSNP treatment of the inflamed endothelium during IBD may hamper exosomal/microvesicular systemic communication.

2015 ◽  
Vol 6 ◽  
pp. 517-528 ◽  
Author(s):  
Jennifer Y Kasper ◽  
Lisa Feiden ◽  
Maria I Hermanns ◽  
Christoph Bantz ◽  
Michael Maskos ◽  
...  

The air–blood barrier is a very thin membrane of about 2.2 µm thickness and therefore represents an ideal portal of entry for nanoparticles to be used therapeutically in a regenerative medicine strategy. Until now, numerous studies using cellular airway models have been conducted in vitro in order to investigate the potential hazard of NPs. However, in most in vitro studies a crucial alveolar component has been neglected. Before aspirated NPs encounter the cellular air–blood barrier, they impinge on the alveolar surfactant layer (10–20 nm in thickness) that lines the entire alveolar surface. Thus, a prior interaction of NPs with pulmonary surfactant components will occur. In the present study we explored the impact of pulmonary surfactant on the cytotoxic potential of amorphous silica nanoparticles (aSNPs) using in vitro mono- and complex coculture models of the air–blood barrier. Furthermore, different surface functionalisations (plain-unmodified, amino, carboxylate) of the aSNPs were compared in order to study the impact of chemical surface properties on aSNP cytotoxicity in combination with lung surfactant. The alveolar epithelial cell line A549 was used in mono- and in coculture with the microvascular cell line ISO-HAS-1 in the form of different cytotoxicity assays (viability, membrane integrity, inflammatory responses such as IL-8 release). At a distinct concentration (100 µg/mL) aSNP–plain displayed the highest cytotoxicity and IL-8 release in monocultures of A549. aSNP–NH2 caused a slight toxic effect, whereas aSNP–COOH did not exhibit any cytotoxicity. In combination with lung surfactant, aSNP–plain revealed an increased cytotoxicity in monocultures of A549, aSNP–NH2 caused a slightly augmented toxic effect, whereas aSNP–COOH did not show any toxic alterations. A549 in coculture did not show any decreased toxicity (membrane integrity) for aSNP–plain in combination with lung surfactant. However, a significant augmented IL-8 release was observed, but no alterations in combination with lung surfactant. The augmented aSNP toxicity with surfactant in monocultures appears to depend on the chemical surface properties of the aSNPs. Reactive silanol groups seem to play a crucial role for an augmented toxicity of aSNPs. The A549 cells in the coculture seem to be more robust towards aSNPs, which might be a result of a higher differentiation and polarization state due the longer culture period.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tamiru N. Alkie ◽  
Jondavid de Jong ◽  
Kristof Jenik ◽  
Karl M. Klinger ◽  
Stephanie J. DeWitte-Orr

Abstract Innate immunity is induced when pathogen-associated molecular patterns (PAMPs) bind host pattern recognition receptors (PRRs). Polyinosinic:polycytidylic acid [poly(I:C)] is a synthetic analogue of viral dsRNA that acts as a PAMP, inducing type I interferons (IFNs) in vertebrates. In the present study, the immunostimulatory effects of high molecular weight (HMW) poly(I:C) in rainbow trout cells were measured when bound to a cationic phytoglycogen nanoparticle (Nano-HMW). The physical characteristics of the nanoparticle itself, when bound to different lengths of dsRNA and when cell associated was evaluated. Optimal concentration and timing for innate immune stimulation was measured using the RTG-P1 reporter cell line. The immunostimulatory effects of HMW poly (I:C) was compared to Nano-HMW in vitro using the RTgutGC cell line cultured in a conventional monolayer or a transwell culture system. The ability of an activated intestinal epithelium to transmit an antiviral signal to macrophages was evaluated using a co-culture of RTgutGC cells and RTSll (a monocyte/macrophage cell). In all culture conditions, Nano-HMW was a more effective inducer of IFN-related antiviral immune responses compared to HMW poly (I:C) alone. This study introduces the use of cationic phytoglycogen nanoparticles as a novel delivery system for immunomodulatory molecules to enhance immune responses in aquatic vertebrates.


Toxins ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 152 ◽  
Author(s):  
Lucile Pellan ◽  
Noël Durand ◽  
Véronique Martinez ◽  
Angélique Fontana ◽  
Sabine Schorr-Galindo ◽  
...  

The aim of this study was to investigate the impact of commercialized biological control agents (BCAs) against two major mycotoxigenic fungi in cereals, Fusarium graminearum and Fusarium verticillioides, which are trichothecene and fumonisin producers, respectively. With these objectives in mind, three commercial BCAs were selected with contrasting uses and microorganism types (T. asperellum, S. griseoviridis, P. oligandrum) and a culture medium was identified to develop an optimized dual culture bioassay method. Their comportment was examined in dual culture bioassay in vitro with both fusaria to determine growth and mycotoxin production kinetics. Antagonist activity and variable levels or patterns of mycotoxinogenesis inhibition were observed depending on the microorganism type of BCA or on the culture conditions (e.g., different nutritional sources), suggesting that contrasting biocontrol mechanisms are involved. S. griseoviridis leads to a growth inhibition zone where the pathogen mycelium structure is altered, suggesting the diffusion of antimicrobial compounds. In contrast, T. asperellum and P. oligandrum are able to grow faster than the pathogen. T. asperellum showed the capacity to degrade pathogenic mycelia, involving chitinolytic activities. In dual culture bioassay with F. graminearum, this BCA reduced the growth and mycotoxin concentration by 48% and 72%, respectively, and by 78% and 72% in dual culture bioassay against F. verticillioides. P. oligandrum progressed over the pathogen colony, suggesting a close type of interaction such as mycoparasitism, as confirmed by microscopic observation. In dual culture bioassay with F. graminearum, P. oligandrum reduced the growth and mycotoxin concentration by 79% and 93%, respectively. In the dual culture bioassay with F. verticillioides, P. oligandrum reduced the growth and mycotoxin concentration by 49% and 56%, respectively. In vitro dual culture bioassay with different culture media as well as the nutritional phenotyping of different microorganisms made it possible to explore the path of nutritional competition in order to explain part of the observed inhibition by BCAs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 614-614
Author(s):  
Jill Corre ◽  
Elodie Labat ◽  
Nicolas Espagnolle ◽  
Hervé Avet-Loiseau ◽  
Murielle Roussel ◽  
...  

Abstract Abstract 614 We previously reported that bone marrow mesenchymal stem cells (BMMSCs) from newly diagnosed multiple myeloma (MM) patients were abnormal. In particular, we showed that Growth Differentiation 15 (GDF15) expression was higher in MM BMMSCs than in normal BMMSCs. GDF15 is a divergent member of the human TGFβ superfamily. GDF15 overexpression has been described in numerous malignancies and its concentration is increased in the serum of patients with glioma, prostate, colorectal or pancreatic cancers. Contradictory data prevent to understand clearly GDF15 implication in pathophysiology of tumors. Furthermore, GDF15 has never been studied in haematological malignancies. Our first objective was thus to determine the effect of human recombinant GDF15 (rGDF15) on MOLP-6 stroma-dependent cell line and MM1.S stroma-independent cell line under serum free culture conditions. rGDF15 could significantly increase cell survival in MOLP-6 but not in MM1.S. Interestingly, rGDF15 was able to induce Akt phosphorylation on Threonine 308 in MOLP-6 and primary MM cells but not in MM1.S cells. Furthermore, pre-treatment of MOLP-6 with Akt pharmacologic inhibitor abrogated the prosurvival effect of GDF15, suggesting an Akt-dependent mechanism. In the same culture conditions, we observed that rGDF15 could abrogate toxicity of drugs classically used in MM treatment (melphalan, bortezomid and lenalidomide) for both cell lines MOLP-6 and MM1.S, suggesting that this cytoprotective effect may be Akt-independent. Because of the in vitro effects of GDF15, our second objective was to determine whether the plasma concentration of GDF15 (pGDF15) in patients with MM may be indicative of the seriousness of the disease or correlate with the response to the treatment. Thus, we investigated the pGDF15 in 131 patients with newly diagnosed MM and 13 healthy subjects. We first found that it was significantly higher for patients with MM (0.90±1.10 ng/mL) than for healthy subjects (0.25±0.08 ng/mL) (P< .001). In patients with MM, pGDF15 correlated with the main prognostic factor of the disease (i.e. International Staging System, b2 microglobulin level, presence or absence of deletion of chromosome 13, and bone status). For the 81 patients with high pGDF15 level (≥ 0.50 ng/mL), the probabilities of event-free and overall survival 30 months after diagnosis were 50% and 75%. For the 50 patients with low pGDF15 level (< 0.5 ng/mL), the probabilities were 80% and 97% (P< .0045 and P< .013, respectively). However, we did not find a clear relationship between pGDF15 and response to treatment. We analysed the impact of prognostic factors on event-free survival for the 131 patients with MM. On univariate analysis, event-free survival was significantly related to age (P= .003), b2-microglobulin level (P= .02) and pGDF-15 level (P= .003). On multivariate analysis, event-free survival was significantly related to age (P= .001) and pGDF15 level (P= .04). Our study demonstrates that GDF15 is a survival and cytoprotective factor for MM cells and that pGDF15 is related to initial parameters of the disease and survival, which specifically implicates the MM microenvironment in the pathophysiology and the prognosis of the disease. Disclosures: No relevant conflicts of interest to declare.


Reproduction ◽  
2010 ◽  
Vol 139 (4) ◽  
pp. 749-757 ◽  
Author(s):  
Gillian Cowan ◽  
Andrew J Childs ◽  
Richard A Anderson ◽  
Philippa T K Saunders

The somatic (Sertoli cell (SC), Leydig cell (LC), and peritubular myoid (PTM) cell) cells play key roles in development of the fetal testis. We established monolayer cultures from second trimester human testes and investigated the pattern of expression of cell-lineage characteristic mRNAs. Expression of some SC-associated genes (SRY, SOX9, WT1, GATA4, and SF1) was detectable up to and including passage 3 (P3), while others (anti-Müllerian hormone; desert hedgehog) present prior to dissociation were not expressed in the cultured cells. Transcripts encoding the androgen receptor were expressed but addition of dihydrotestosterone (DHT) had no impact on expression of mRNAs expressed in SC or LC. Total concentrations of mRNAs encoding smooth muscle actin (ACTA2) and desmin increased from P1 to P3; an increasing proportion of the cells in the cultures were immunopositive for ACTA2 consistent with proliferation/differentiation of PTM cells. In conclusion, somatic cell monolayer cultures were established from human fetal testes; these cultures could form the basis for future studies based on isolation of purified populations of somatic cells and manipulation of gene expression that is difficult to achieve with organ culture systems. Our results suggest that fetal SC do not maintain a fully differentiated phenotype in vitro, yet PTM (ACTA2 positive) cells readily adapt to monolayer culture conditions in the presence of DHT. This culture system provides an opportunity to study the impact of regulatory factors on gene expression in PTM cells, a population thought to play a key role in mediating androgen action within the developing testis.


2013 ◽  
Vol 67 (4) ◽  
pp. 863-868 ◽  
Author(s):  
T. M. Straub ◽  
J. R. Hutchison ◽  
R. A. Bartholomew ◽  
C. O. Valdez ◽  
N. B. Valentine ◽  
...  

Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional (3-D) tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that lead to more reproducible hNoV infectivity in vitro requires that the cell line be (1) of human gastrointestinal origin, (2) expresses apical microvilli, and (3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log10 increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microscopy. In our hands, using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using qRT-PCR that measures all RNA vs. plaque assays that measure infectious virus.


2020 ◽  
Author(s):  
Leandra B. Jones ◽  
Sanjay Kumar ◽  
Courtnee’ R. Bell ◽  
Brennetta J. Crenshaw ◽  
Mamie T. Coats ◽  
...  

AbstractExtracellular vesicles (EVs) play a fundamental role in cell and infection biology and have the potential to act as biomarkers for novel diagnostic tools. In this study, we explored the in vitro impact of bacterial lipopolysaccharide administration on a cell line that represents a target for bacterial infection in the host. Administration of lipopolysaccharide at varying concentrations to this A549 cell line caused only modest changes in cell death, but EV numbers were significantly changed. After treatment with the highest concentration of lipopolysaccharide, EVs derived from A549 cells packaged significantly less interleukin-6 and lysosomal-associated membrane protein 1. We also examined the impact of lipopolysaccharide administration on exosome biogenesis and cargo composition in BALB/c mice. Serum-isolated EVs from lipopolysaccharide-treated mice showed significantly increased lysosomal-associated membrane protein 1 and toll-like receptor 4 levels compared with EVs from control mice. In summary, this study demonstrated that EV numbers and cargo were altered using these in vitro and in vivo models of bacterial infection.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4340 ◽  
Author(s):  
Manasi P. Jogalekar ◽  
Elba E. Serrano

Triple negative breast cancer (TNBC) is a belligerent carcinoma that is unresponsive to targeted receptor therapies. Development of new treatment strategies would benefit from an expanded repertoire of in vitro cell culture systems, such as those that support tridimensional growth in the presence of hydrogel scaffolds. To this end, we established protocols for maintenance of the TNBC cell line HCC70 in monolayer culture and in a commercially available basement membrane matrix hydrogel. We evaluated the general morphology of cells grown in both conditions with light microscopy, and examined their subcellular organization using transmission electron microscopy (TEM). Phase contrast and confocal microscopy showed the prevalence of irregularly shaped flattened cells in monolayer cultures, while cells maintained in hydrogel organized into multi-layered spheroids. A quantitative ultrastructural analysis comparing cells from the two culture conditions revealed that cells that formed spheroids comprised a greater number of mitochondria, autophagic vacuoles and intercellular junctions than their monolayer counterparts, within the equivalent area of sampled tissue. These observations suggest that triple negative breast cancer cells in culture can alter their organelle content, as well as their morphology, in response to their microenvironment. Methods presented here may be useful for those who intend to image cell cultures with TEM, and for investigators who seek to implement diverse in vitro models in the search for therapeutic molecular targets for TNBC.


Sign in / Sign up

Export Citation Format

Share Document