scholarly journals Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

2015 ◽  
Vol 6 ◽  
pp. 517-528 ◽  
Author(s):  
Jennifer Y Kasper ◽  
Lisa Feiden ◽  
Maria I Hermanns ◽  
Christoph Bantz ◽  
Michael Maskos ◽  
...  

The air–blood barrier is a very thin membrane of about 2.2 µm thickness and therefore represents an ideal portal of entry for nanoparticles to be used therapeutically in a regenerative medicine strategy. Until now, numerous studies using cellular airway models have been conducted in vitro in order to investigate the potential hazard of NPs. However, in most in vitro studies a crucial alveolar component has been neglected. Before aspirated NPs encounter the cellular air–blood barrier, they impinge on the alveolar surfactant layer (10–20 nm in thickness) that lines the entire alveolar surface. Thus, a prior interaction of NPs with pulmonary surfactant components will occur. In the present study we explored the impact of pulmonary surfactant on the cytotoxic potential of amorphous silica nanoparticles (aSNPs) using in vitro mono- and complex coculture models of the air–blood barrier. Furthermore, different surface functionalisations (plain-unmodified, amino, carboxylate) of the aSNPs were compared in order to study the impact of chemical surface properties on aSNP cytotoxicity in combination with lung surfactant. The alveolar epithelial cell line A549 was used in mono- and in coculture with the microvascular cell line ISO-HAS-1 in the form of different cytotoxicity assays (viability, membrane integrity, inflammatory responses such as IL-8 release). At a distinct concentration (100 µg/mL) aSNP–plain displayed the highest cytotoxicity and IL-8 release in monocultures of A549. aSNP–NH2 caused a slight toxic effect, whereas aSNP–COOH did not exhibit any cytotoxicity. In combination with lung surfactant, aSNP–plain revealed an increased cytotoxicity in monocultures of A549, aSNP–NH2 caused a slightly augmented toxic effect, whereas aSNP–COOH did not show any toxic alterations. A549 in coculture did not show any decreased toxicity (membrane integrity) for aSNP–plain in combination with lung surfactant. However, a significant augmented IL-8 release was observed, but no alterations in combination with lung surfactant. The augmented aSNP toxicity with surfactant in monocultures appears to depend on the chemical surface properties of the aSNPs. Reactive silanol groups seem to play a crucial role for an augmented toxicity of aSNPs. The A549 cells in the coculture seem to be more robust towards aSNPs, which might be a result of a higher differentiation and polarization state due the longer culture period.

1998 ◽  
Vol 84 (1) ◽  
pp. 146-156 ◽  
Author(s):  
Olga V. Lopatko ◽  
Sandra Orgeig ◽  
Christopher B. Daniels ◽  
David Palmer

Lopatko, Olga V., Sandra Orgeig, Christopher B. Daniels, and David Palmer. Alterations in the surface properties of lung surfactant in the torpid marsupial Sminthopsis crassicaudata. J. Appl. Physiol. 84(1): 146–156, 1998.—Torpor changes the composition of pulmonary surfactant (PS) in the dunnart Sminthopsis crassicaudata [C. Langman, S. Orgeig, and C. B. Daniels. Am. J. Physiol. 271 ( Regulatory Integrative Comp. Physiol. 40): R437–R445, 1996]. Here we investigated the surface activity of PS in vitro. Five micrograms of phospholipid per centimeter squared surface area of whole lavage (from mice or from warm-active, 4-, or 8-h torpid dunnarts) were applied dropwise onto the subphase of a Wilhelmy-Langmuir balance at 20°C and stabilized for 20 min. After 4 h of torpor, the adsorption rate increased, and equilibrium surface tension (STeq), minimal surface tension (STmin), and the %area compression required to achieve STmin decreased, compared with the warm-active group. After 8 h of torpor, STmin decreased [from 5.2 ± 0.3 to 4.1 ± 0.3 (SE) mN/m]; %area compression required to achieve STmindecreased (from 43.4 ± 1.0 to 27.4 ± 0.8); the rate of adsorption decreased; and STeqincreased (from 26.3 ± 0.5 to 38.6 ± 1.3 mN/m). ST-area isotherms of warm-active dunnarts and mice at 20°C had a shoulder on compression and a plateau on expansion. These disappeared on the isotherms of torpid dunnarts. Samples of whole lavage (from warm-active and 8-h torpor groups) containing 100 μg phospholipid/ml were studied by using a captive-bubble surfactometer at 37°C. After 8 h of torpor, STmin increased (from 6.4 ± 0.3 to 9.1 ± 0.3 mN/m) and %area compression decreased in the 2nd (from 88.6 ± 1.7 to 82.1 ± 2.0) and 3rd (from 89.1 ± 0.8 to 84.9 ± 1.8) compression-expansion cycles, compared with warm-active dunnarts. ST-area isotherms of warm-active dunnarts at 37°C did not have a shoulder on compression. This shoulder appeared on the isotherms of torpid dunnarts. In conclusion, there is a strong correlation between in vitro changes in surface activity and in vivo changes in lipid composition of PS during torpor, although static lung compliance remained unchanged (see Langman et al. cited above). Surfactant from torpid animals is more active at 20°C and less active at 37°C than that of warm-active animals, which may represent a respiratory adaptation to low body temperatures of torpid dunnarts.


2019 ◽  
Vol 20 (13) ◽  
pp. 3301 ◽  
Author(s):  
Jennifer Y. Kasper ◽  
M. Iris Hermanns ◽  
Annette Kraegeloh ◽  
W. Roth ◽  
C. James Kirkpatrick ◽  
...  

The intestinal microvasculature (iMV) plays multiple pathogenic roles during chronic inflammatory bowel disease (IBD). The iMV acts as a second line of defense and is, among other factors, crucial for the innate immunity in the gut. It is also the therapeutic location in IBD targeting aggravated leukocyte adhesion processes involving ICAM-1 and E-selectin. Specific targeting is stressed via nanoparticulate drug vehicles. Evaluating the iMV in enterocyte barrier models in vitro could shed light on inflammation and barrier-integrity processes during IBD. Therefore, we generated a barrier model by combining the enterocyte cell line Caco-2 with the microvascular endothelial cell line ISO-HAS-1 on opposite sides of a transwell filter-membrane under culture conditions which mimicked the physiological and inflamed conditions of IBD. The IBD model achieved a significant barrier-disruption, demonstrated via transepithelial-electrical resistance (TER), permeability-coefficient (Papp) and increase of sICAM sE-selectin and IL-8. In addition, the impact of a prospective model drug-vehicle (silica nanoparticles, aSNP) on ongoing inflammation was examined. A decrease of sICAM/sE-selectin was observed after aSNP-exposure to the inflamed endothelium. These findings correlated with a decreased secretion of ICAM/E-selectin bearing exosomes/microvesicles, as evaluated via ELISA. Our findings indicate that aSNP treatment of the inflamed endothelium during IBD may hamper exosomal/microvesicular systemic communication.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
F. Sambale ◽  
S. Wagner ◽  
F. Stahl ◽  
R. R. Khaydarov ◽  
T. Scheper ◽  
...  

Silver nanoparticles are widely used for many applications. In this study silver nanoparticles have been tested for their toxic effect on fibroblasts (NIH-3T3), on a human lung adenocarcinoma epithelial cell line (A-549), on PC-12-cells, a rat adrenal pheochromocytoma cell line, and on HEP-G2-cells, a human hepatocellular carcinoma cell line. The viability of the cells cultivated with different concentrations of silver was determined by the MTT assay, a photometric method to determine cell metabolism. Dose-response curves were extrapolated and IC50, total lethal concentration (TLC), and no observable adverse effect concentration (NOAEC) values were calculated for each cell line. As another approach, ECIS (electric-cell-substrate-impedance-sensing) an automated method to monitor cellular behavior in real-time was applied to observe cells cultivated with silver nanoparticles. To identify the type of cell death the membrane integrity was analyzed by measurements of the lactate dehydrogenase releases and by determination of the caspase 3/7 activity. To ensure that the cytotoxic effect of silver nanoparticles is not traced back to the presence of Ag+ions in the suspension, an Ag+salt (AgNO3) has been examined at the same concentration of Ag+present in the silver nanoparticle suspension that is assuming that the Ag particles are completely available as Ag+ions.


Author(s):  
Michelle Visagie ◽  
Annie Joubert

Abstract2-methoxyestradiol (2ME2) exerts estrogen receptor-independent anti-proliferative, anti-angiogenic and anti-tumor activity in vitro and in vivo. Due to its low bioavailability and rapid metabolic degradation, several analogues have been developed in recent years. 2-methoxyestradiol-bis-sulphamate (2-MeOE2bisMATE) is a bis-sulphamoylated derivative of 2ME2 with anti-proliferative activity. The aim of this study was to investigate cell signaling events induced by 2-MeOE2bisMATE in a non-tumorigenic cell line (MCF-12A) by analysing its influence on cell number, morphology and membrane integrity, and the possible induction of apoptosis and autophagy. Dose- and time-dependent studies revealed that 48 h exposure to 2-MeOE2bisMATE (0.4 μM) resulted in a decrease in cell numbers to 79%. A slight increase in the level of lactate dehydrogenase production was observed in the 2-MeOE2bisMATE-treated cells. Morphological studies revealed an increase in the number of cells in metaphase. Hallmarks of apoptosis were also found, namely nuclear fragmentation and apoptotic bodies. In addition, increased lysosomal staining was observed via fluorescent microscopy, suggesting the induction of another type of cell death, namely autophagy. Since 2-MeOE2bisMATE is regarded as a potential anti-cancer agent, it is also imperative to investigate the susceptibility of non-tumorigenic cells to its influence. The data generated from this study contributes to the understanding of the action that 2-MeOE2bisMATE exerts on the non-tumorigenic MCF-12A breast epithelial cell line.


2020 ◽  
Author(s):  
Leandra B. Jones ◽  
Sanjay Kumar ◽  
Courtnee’ R. Bell ◽  
Brennetta J. Crenshaw ◽  
Mamie T. Coats ◽  
...  

AbstractExtracellular vesicles (EVs) play a fundamental role in cell and infection biology and have the potential to act as biomarkers for novel diagnostic tools. In this study, we explored the in vitro impact of bacterial lipopolysaccharide administration on a cell line that represents a target for bacterial infection in the host. Administration of lipopolysaccharide at varying concentrations to this A549 cell line caused only modest changes in cell death, but EV numbers were significantly changed. After treatment with the highest concentration of lipopolysaccharide, EVs derived from A549 cells packaged significantly less interleukin-6 and lysosomal-associated membrane protein 1. We also examined the impact of lipopolysaccharide administration on exosome biogenesis and cargo composition in BALB/c mice. Serum-isolated EVs from lipopolysaccharide-treated mice showed significantly increased lysosomal-associated membrane protein 1 and toll-like receptor 4 levels compared with EVs from control mice. In summary, this study demonstrated that EV numbers and cargo were altered using these in vitro and in vivo models of bacterial infection.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8686
Author(s):  
Faviola Tavares-Carreón ◽  
Susana De la Torre-Zavala ◽  
Hector Fernando Arocha-Garza ◽  
Valeria Souza ◽  
Luis J. Galán-Wong ◽  
...  

With the purpose of discovering new anticancer molecules that might have fewer side effects or reduce resistance to current antitumor drugs, a bioprospecting study of the microalgae of the Cuatro Cienegas Basin (CCB), an oasis in the Chihuahuan desert in Mexico was conducted. A microalgae was identified as Granulocystopsis sp. through sequencing the rbcL gene and reconstruction of a phylogenetic tree, and its anticancer activities were assessed using various in vitro assays and different cell lines of human cancers, including lung, skin melanoma, colorectal, breast and prostatic cancers, as well as a normal cell line. The values of IC50 of the microalgae methanolic extract using the MTT assay were lower than 20 μg/ml, except that in the lung cancer line and the normal cell line. In vitro, the microalgae extract caused the loss of membrane integrity, monitored by the trypan blue exclusion test and exhibited marked inhibition of adhesion and cell proliferation in cancer cell lines, through the evaluation of the clonogenic assay. Also, typical nuclear changes of apoptotic processes were observed under the microscope, using the dual acridine orange/ethidium bromide fluorescent staining. Finally, the microalgae extract increased the activity of caspases 3 and 7 in skin melanoma, colon, breast and prostate cancer cells, in the same way as the apoptotic inductor and powerful antitumoral drug, doxorubicin. This study shows the anticancer activity from Granulocystopsis sp., a microalgae isolated from the CCB.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0244549
Author(s):  
Bishnubrata Patra ◽  
Muhammad Abdul Lateef ◽  
Melica Nourmoussavi Brodeur ◽  
Hubert Fleury ◽  
Euridice Carmona ◽  
...  

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy in North America, underscoring the need for the development of new therapeutic strategies for the management of this disease. Although many drugs are pre-clinically tested every year, only a few are selected to be evaluated in clinical trials, and only a small number of these are successfully incorporated into standard care. Inaccuracies with the initial in vitro drug testing may be responsible for some of these failures. Drug testing is often performed using 2D monolayer cultures or 3D spheroid models. Here, we investigate the impact that these different in vitro models have on the carboplatin response of four EOC cell lines, and in particular how different 3D models (polydimethylsiloxane-based microfluidic chips and ultra low attachment plates) influence drug sensitivity within the same cell line. Our results show that carboplatin responses were observed in both the 3D spheroid models tested using apoptosis/cell death markers by flow cytometry. Contrary to previously reported observations, these were not associated with a significant decrease in spheroid size. For the majority of the EOC cell lines (3 out of 4) a similar carboplatin response was observed when comparing both spheroid methods. Interestingly, two cell lines classified as resistant to carboplatin in 2D cultures became sensitive in the 3D models, and one sensitive cell line in 2D culture showed resistance in 3D spheroids. Our results highlight the challenges of choosing the appropriate pre-clinical models for drug testing.


1997 ◽  
Vol 272 (2) ◽  
pp. L335-L343 ◽  
Author(s):  
S. B. Hall ◽  
R. W. Hyde ◽  
M. C. Kahn

The large active particles of pulmonary surfactant are depleted in patients with acute respiratory distress syndrome and in animal models of this disorder. We studied in vitro conversion of large to small particles, separated by differential sedimentation, to determine how factors lavaged from rabbits injured by intravenous oleic acid would affect conversion. In half-filled test tubes rotated end over end, samples from injured animals increased the recovery of large particles from 40 +/- 6% of uncycled samples for controls to 62 +/- 21%. We hypothesized that proteins in the injured samples, and perhaps also the proteinase inhibitors used previously to block conversion (N. J. Gross and R. M. Schultz. Biochim. Biophys. Acta 1044: 222-230, 1990), stabilized surfactant particles by limiting access to the cycling interface. Hemoglobin, neutrophil elastase, and alpha1-antiproteinase (alpha1-PI) oxidized to eliminate its antiproteinase activity all stabilized large particles against conversion. Hemoglobin was most effective, increasing recovery from 18 +/- 5% for controls to 86 +/- 5% with 0.4 mg/ml hemoglobin. Native alpha1-PI had no effect on conversion. Our results suggest that acceleration of normal conversion is unlikely to explain the depletion of large particles in injured lungs. They also suggest that conversion of surfactant particles separated by differential sedimentation requires no proteinase susceptible to inhibition by alpha1-PI. They provide an alternate hypothesis related to interfacial effects rather than proteinase inhibition for the previously reported effect of alpha1-PI on conversion of particles separated according to density.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1574 ◽  
Author(s):  
Michalina Ehlert ◽  
Aleksandra Radtke ◽  
Tomasz Jędrzejewski ◽  
Katarzyna Roszek ◽  
Michał Bartmański ◽  
...  

In vitro biological research on a group of amorphous titania coatings of different nanoarchitectures (nanoporous, nanotubular, and nanosponge-like) produced on the surface of Ti6Al4V alloy samples have been carried out, aimed at assessing their ability to interact with adipose-derived mesenchymal stem cells (ADSCs) and affect their activity. The attention has been drawn to the influence of surface coating architecture and its physicochemical properties on the ADSCs proliferation. Moreover, in vitro co-cultures: (1) fibroblasts cell line L929/ADSCs and (2) osteoblasts cell line MG-63/ADSCs on nanoporous, nanotubular and nanosponge-like TiO2 coatings have been studied. This allowed for evaluating the impact of the surface properties, especially roughness and wettability, on the creation of the beneficial microenvironment for co-cultures and/or enhancing differentiation potential of stem cells. Obtained results showed that the nanoporous surface is favorable for ADSCs, has great biointegrative properties, and supports the growth of co-cultures with MG-63 osteoblasts and L929 fibroblasts. Additionally, the number of osteoblasts seeded and cultured with ADSCs on TNT5 surface raised after 72-h culture almost twice when compared with the unmodified scaffold and by 30% when compared with MG-63 cells growing alone. The alkaline phosphatase activity of MG-63 osteoblasts co-cultured with ADSCs increased, that indirectly confirmed our assumptions that TNT-modified scaffolds create the osteogenic niche and enhance osteogenic potential of ADSCs.


Sign in / Sign up

Export Citation Format

Share Document