scholarly journals Assessment of Mitochondrial Dysfunction in Experimental Autoimmune Encephalomyelitis (EAE) Models of Multiple Sclerosis

2019 ◽  
Vol 20 (20) ◽  
pp. 4975 ◽  
Author(s):  
Xiulin Ng ◽  
Mona Sadeghian ◽  
Simon Heales ◽  
Iain P. Hargreaves

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that involves the autoreactive T-cell attack on axonal myelin sheath. Lesions or plaques formed as a result of repeated damage and repair mechanisms lead to impaired relay of electrical impulses along the nerve, manifesting as clinical symptoms of MS. Evidence from studies in experimental autoimmune encephalomyelitis (EAE) models of MS strongly suggests that mitochondrial dysfunction presents at the onset of disease and throughout the disease course. The aim of this study was to determine if mitochondrial dysfunction occurs before clinical symptoms arise, and whether this is confined to the CNS. EAE was induced in C57B/L6 mice, and citrate synthase and mitochondrial respiratory chain (MRC) complex I–IV activities were assayed at presymptomatic (3 or 10 days post first immunisation (3 or 10 DPI)) and asymptomatic (17 days post first immunisation (17 DPI) time-points in central nervous system (CNS; spinal cord) and peripheral (liver and jaw muscle) tissues. Samples from animals immunised with myelin oligodendrocyte glycoprotein (MOG) as EAE models were compared with control animals immunised with adjuvant (ADJ) only. Significant changes in MOG compared to control ADJ animals in MRC complex I activity occurred only at presymptomatic stages, with an increase in the spinal cord at 10 DPI (87.9%), an increase at 3 DPI (25.6%) and decrease at 10 DPI (22.3%) in the jaw muscle, and an increase in the liver at 10 DPI (71.5%). MRC complex II/III activity changes occurred at presymptomatic and the asymptomatic stages of the disease, with a decrease occurring in the spinal cord at 3 DPI (87.6%) and an increase at 17 DPI (36.7%), increase in the jaw muscle at 10 DPI (25.4%), and an increase at 3 DPI (75.2%) and decrease at 17 DPI (95.7%) in the liver. Citrate synthase activity was also significantly decreased at 10 DPI (27.3%) in the liver. No significant changes were observed in complex IV across all three tissues assayed. Our findings reveal evidence that mitochondrial dysfunction is present at the asymptomatic stages in the EAE model of MS, and that the changes in MRC enzyme activities are tissue-specific and are not confined to the CNS.

2001 ◽  
Vol 193 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Shin Hisahara ◽  
Junying Yuan ◽  
Takashi Momoi ◽  
Hideyuki Okano ◽  
Masayuki Miura

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by localized areas of demyelination. The mechanisms underlying oligodendrocyte (OLG) injury in MS and EAE remain unknown. Here we show that caspase-11 plays crucial roles in OLG death and pathogenesis in EAE. Caspase-11 and activated caspase-3 were both expressed in OLGs in spinal cord EAE lesions. OLGs from caspase-11–deficient mice were highly resistant to the cell death induced by cytotoxic cytokines. EAE susceptibility and cytokine concentrations in the CNS were significantly reduced in caspase-11–deficient mice. Our findings suggest that OLG death is mediated by a pathway that involves caspases-11 and -3 and leads to the demyelination observed in EAE.


2021 ◽  
Author(s):  
William E. Barclay ◽  
M. Elizabeth Deerhake ◽  
Makoto Inoue ◽  
Toshiaki Nonaka ◽  
Kengo Nozaki ◽  
...  

ABSTRACTInflammasomes are a class of innate immune signaling platforms that activate in response to an array of cellular damage and pathogens. Inflammasomes promote inflammation under many circumstances to enhance immunity against pathogens and inflammatory responses through their effector cytokines, IL-1β and IL-18. Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are such autoimmune conditions influenced by inflammasomes. Despite work investigating inflammasomes during EAE, little remains known concerning the role of inflammasomes in the central nervous system (CNS) during the disease. Here we use multiple genetically modified mouse models to monitor activated inflammasomes in situ based on ASC oligomerization in the spinal cord. Using inflammasome reporter mice, we found heightened inflammasome activation in astrocytes after the disease peak. In contrast, microglia and CNS-infiltrated myeloid cells had few activated inflammasomes in the CNS during EAE. Astrocyte inflammasome activation was dependent on AIM2, but low IL-1β expression and no significant signs of cell death were found in astrocytes during EAE. Thus, the AIM2 inflammasome activation in astrocytes may have a distinct role from traditional inflammasome-mediated inflammation.SIGNIFICANCE STATEMENTInflammasome activation in the peripheral immune system is pathogenic in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, inflammasome activity in the central nervous system (CNS) is largely unexplored. Here, we used genetically modified mice to determine inflammasome activation in the CNS during EAE. Our data indicated heightened AIM2 inflammasome activation in astrocytes after the disease peak. Unexpectedly, neither CNS-infiltrated myeloid cells nor microglia were the primary cells with activated inflammasomes in SC during EAE. Despite AIM2 inflammasome activation, astrocytes did not undergo apparent cell death and produced little of the proinflammatory cytokine, IL-1β, during EAE. This study showed that CNS inflammasome activation occurs during EAE without associating with IL-1β-mediated inflammation.


2019 ◽  
Vol 28 (9-10) ◽  
pp. 1155-1160 ◽  
Author(s):  
J. Xu ◽  
Y. Wang ◽  
H. Jiang ◽  
M. Sun ◽  
J. Gao ◽  
...  

Multiple sclerosis is a disease characterized by inflammation and demyelination located in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for multiple sclerosis (MS). Although the roles of T cells in MS/EAE have been well investigated, little is known about the functions of other immune cells in the neuroinflammation model. Here we found that an essential cytokine transforming growth factor β (TGF-β) which could mediate the differentiation of Th17/regulatory T cells was implicated in the natural killer (NK) cells’ activity in EAE. In EAE mice, TGF-β expression was first increased at the onset and then decreased at the peak, but the expressions of TGF-β receptors and downstream molecules were not affected in EAE. When we immunized the mice with MOG antigen, it was revealed that TGF-β treatment reduced susceptibility to EAE with a lower clinical score than the control mice without TGF-β. Consistently, inflammatory cytokine production was reduced in the TGF-β treated group, especially with downregulated pathogenic interleukin-17 in the central nervous system tissue. Furthermore, TGF-β could increase the transcription level of NK cell marker NCR1 both in the spleen and in the CNS without changing other T cell markers. Meanwhile TGF-β promoted the proliferation of NK cell proliferation. Taken together, our data demonstrated that TGF-β could confer protection against EAE model in mice through NK cells, which would be useful for the clinical therapy of MS.


2019 ◽  
Vol 26 (3) ◽  
pp. 284-293 ◽  
Author(s):  
Jennifer A Lefeuvre ◽  
Joseph R Guy ◽  
Nicholas J Luciano ◽  
Seung-Kwon Ha ◽  
Emily Leibovitch ◽  
...  

Background: Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a nonhuman primate model of multiple sclerosis (MS) that shares numerous clinical, radiological, and pathological features with MS. Among the clinical features are motor and sensory deficits that are highly suggestive of spinal cord (SC) damage. Objective: To characterize the extent and nature of SC damage in symptomatic marmosets with EAE using a combined magnetic resonance imaging (MRI) and histopathology approach. Materials and Methods: SC tissues from five animals were scanned using 7 T MRI to collect high-resolution ex vivo images. Lesions were segmented and classified based on shape, size, and distribution along the SC. Tissues were processed for histopathological characterization (myelin and microglia/macrophages). Statistical analysis, using linear mixed-effects models, evaluated the association between MRI and histopathology. Results: Marmosets with EAE displayed two types of SC lesions: focal and subpial lesions. Both lesion types were heterogeneous in size and configuration and corresponded to areas of marked demyelination with high density of inflammatory cells. Inside the lesions, the MRI signal was significantly correlated with myelin content ( p < 0.001). Conclusions: Our findings underscore the relevance of this nonhuman primate EAE model for better understanding mechanisms of MS lesion formation in the SC.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Wenjun Zhu ◽  
Crystal Acosta ◽  
Brian MacNeil ◽  
Claudia Cortes ◽  
Howard Intrater ◽  
...  

Multiple sclerosis (MS) is a central nervous system (CNS) disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP). Molecular signaling through fractalkine (CX3CL1), a nociceptive chemokine, via its receptor (CX3CR1) is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE) model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG) and spinal cord (SC) 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG /SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lan Li ◽  
Guang Wu ◽  
Bo Young Choi ◽  
Bong Geom Jang ◽  
Jin Hee Kim ◽  
...  

The present study aimed to evaluate the therapeutic potential of a mushroom extract fromPhellinus igniariusin an animal model of multiple sclerosis. The medicinal mushroom,Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE) was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55) in C57BL/6 female mice. A water-ethanol extract ofPhellinus igniarius(Piwep) was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord and integrin-α4in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γin the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.


2020 ◽  
Author(s):  
Zhaowei Wang ◽  
Liping Wang ◽  
Fangfang Zhong ◽  
Chenglong Wu ◽  
Sheng-Tao Hou

AbstractAlthough substantial evidence supports smoking as a risk factor for the development of multiple sclerosis (MS) in adulthood, it remains controversial as to whether early-life exposure to environmental tobacco smoke (ETS) increases the risk of MS later in life. Here, using experimental autoimmune encephalomyelitis (EAE) as an animal model for MS, we show that exposing neonatal rats during the 1st week (ETS1-EAE), but not the 2nd week (ETS2-EAE) and the 3rd week (ETS3-EAE) after birth, increased the severity of EAE in adulthood in comparison to pups exposed to filtered compressed air (AIR-EAE). The EST1-EAE rats showed a worse neurological deficit score and a significant increase in CD4+ cell infiltration, demyelination, and axonal injury in the spinal cord compared to AIR-EAE, ETS2-EAE, and ETS3-EAE groups. Flow cytometry analysis showed that the ETS1 group had decreased numbers of regulatory T (Treg) cells and increased effector T (Teff) cells in the brain and spinal cord. The expressions of Treg upstream regulator Foxp3 and downstream cytokines such as IL-10 were also altered accordingly. Together, these findings demonstrate that neonatal ETS exposure suppresses Treg functions and aggravates the severity of EAE, confirming early-life exposure to EST as a potential risk factor for multiple sclerosis in adulthood.


2019 ◽  
Vol 116 (45) ◽  
pp. 22710-22720
Author(s):  
Lindsay S. Cahill ◽  
Monan Angela Zhang ◽  
Valeria Ramaglia ◽  
Heather Whetstone ◽  
Melika Pahlevan Sabbagh ◽  
...  

Experimental autoimmune encephalomyelitis (EAE) is the most common model of multiple sclerosis (MS). This model has been instrumental in understanding the events that lead to the initiation of central nervous system (CNS) autoimmunity. Though EAE has been an effective screening tool for identifying novel therapies for relapsing-remitting MS, it has proven to be less successful in identifying therapies for progressive forms of this disease. Though axon injury occurs in EAE, it is rapid and acute, making it difficult to intervene for the purpose of evaluating neuroprotective therapies. Here, we describe a variant of spontaneous EAE in the 2D2 T cell receptor transgenic mouse (2D2+ mouse) that presents with hind-limb clasping upon tail suspension and is associated with T cell-mediated inflammation in the posterior spinal cord and spinal nerve roots. Due to the mild nature of clinical signs in this model, we were able to maintain cohorts of mice into middle age. Over 9 mo, these mice exhibited a relapsing-remitting course of hind-limb clasping with the development of progressive motor deficits. Using a combined approach of ex vivo magnetic resonance (MR) imaging and histopathological analysis, we observed neurological progression to associate with spinal cord atrophy, synapse degradation, and neuron loss in the gray matter, as well as ongoing axon injury in the white matter of the spinal cord. These findings suggest that mild EAE coupled with natural aging may be a solution to better modeling the neurodegenerative processes seen in MS.


Brain ◽  
2020 ◽  
Author(s):  
Hardeep Kataria ◽  
Christopher G Hart ◽  
Arsalan Alizadeh ◽  
Michael Cossoy ◽  
Deepak K Kaushik ◽  
...  

Abstract Multiple sclerosis is characterized by immune mediated neurodegeneration that results in progressive, life-long neurological and cognitive impairments. Yet, the endogenous mechanisms underlying multiple sclerosis pathophysiology are not fully understood. Here, we provide compelling evidence that associates dysregulation of neuregulin-1 beta 1 (Nrg-1β1) with multiple sclerosis pathogenesis and progression. In the experimental autoimmune encephalomyelitis model of multiple sclerosis, we demonstrate that Nrg-1β1 levels are abated within spinal cord lesions and peripherally in the plasma and spleen during presymptomatic, onset and progressive course of the disease. We demonstrate that plasma levels of Nrg-1β1 are also significantly reduced in individuals with early multiple sclerosis and is positively associated with progression to relapsing-remitting multiple sclerosis. The functional impact of Nrg-1β1 downregulation preceded disease onset and progression, and its systemic restoration was sufficient to delay experimental autoimmune encephalomyelitis symptoms and alleviate disease burden. Intriguingly, Nrg-1β1 therapy exhibited a desirable and extended therapeutic time window of efficacy when administered prophylactically, symptomatically, acutely or chronically. Using in vivo and in vitro assessments, we identified that Nrg-1β1 treatment mediates its beneficial effects in EAE by providing a more balanced immune response. Mechanistically, Nrg-1β1 moderated monocyte infiltration at the blood-CNS interface by attenuating chondroitin sulphate proteoglycans and MMP9. Moreover, Nrg-1β1 fostered a regulatory and reparative phenotype in macrophages, T helper type 1 (Th1) cells and microglia in the spinal cord lesions of EAE mice. Taken together, our new findings in multiple sclerosis and experimental autoimmune encephalomyelitis have uncovered a novel regulatory role for Nrg-1β1 early in the disease course and suggest its potential as a specific therapeutic target to ameliorate disease progression and severity.


Sign in / Sign up

Export Citation Format

Share Document