scholarly journals Corylifol A from Psoralea corylifolia L. Enhances Myogenesis and Alleviates Muscle Atrophy

2020 ◽  
Vol 21 (5) ◽  
pp. 1571 ◽  
Author(s):  
Yeongeun Han ◽  
Hyejin Lee ◽  
Hua Li ◽  
Jae-Ha Ryu

Inflammatory conditions caused by cancer, chronic diseases or aging can lead to skeletal muscle atrophy. We identified myogenic compounds from Psoralea corylifolia (PC), a medicinal plant that has been used for the treatment of inflammatory and skin diseases. C2C12 mouse skeletal myoblasts were differentiated in the presence of eight compounds isolated from PC to evaluate their myogenic potential. Among them, corylifol A showed the strongest transactivation of MyoD and increased expression of myogenic markers, such as MyoD, myogenin and myosin heavy chain (MHC). Corylifol A increased the number of multinucleated and MHC-expressing myotubes. We also found that the p38 MAPK signaling pathway is essential for the myogenic action of corylifol A. Atrophic condition was induced by treatment with dexamethasone. Corylifol A protected against dexamethasone-induced myotube loss by increasing the proportion of multinucleated MHC-expressing myotubes compared with dexamethasone-damaged myotubes. Corylifol A reduced the expression of muscle-specific ubiquitin-E3 ligases (MAFbx and MuRF1) and myostatin, while activating Akt. These dual effects of corylifol A, inhibition of catabolic and activation of anabolic pathways, protect myotubes against dexamethasone damage. In summary, corylifol A isolated from P. corylifolia alleviates muscle atrophic condition through activating myoblast differentiation and suppressing muscle degradation in atrophic conditions.

2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Tatiana Nemirovskaya ◽  
Svetlana Belova ◽  
Boris Shenkman ◽  
Ekaterina Mochalova

Objective Unloading causes rapid skeletal muscle atrophy mainly due to the increased protein degradation. Muscle proteolysis results from the activation of ubiquitin-proteasome systems. The ubiquitination proteins are carried out by muscle-specific E3 ubiquitin ligases – MuRF-1 and MAFbx. It is known that MuRF-1 and MAFbx expression significantly increases on the third day of muscle unloading. We tested the hypothesis that p38 MAPK participates in the regulation of E3 ligases expression and the development of skeletal muscle atrophy during unloading. To check this idea we inhibited p38 MAPK by VX-745. Methods 21 male Wistar rats were divided into 3 groups (7 rats in each group): intact control (C), rats suspended for 3 days (HS) and rats suspended and injected i.p. with VX-745 (10 mg/kg/day) (VX). The hindlimb suspension was carried out according to Morey-Holton technique. The animals were anaesthetised with an i.p. injection of tribromoethanol (240 mg/kg). Under anesthesia, the m.soleus were excised, frozen in liquid nitrogen, and stored at -80°C until further analysis. All procedures with the animals were approved by the Biomedicine Ethics Committee of the Institute of Biomedical Problems of the Russian Academy of Sciences/Physiology section of the Russian Bioethics Committee. The statistical analysis was performed using the REST 2009 v.2.0.12 and Origin Pro programs at the significance level set at 0,05. The results are given as median in percent and interquartile range (0.25-0.75). Results The muscle weight in HS group was significantly reduced (72,3±2,5 mg) compared to C (83,0±3 mg), p<0.05, while the soleus weight of VX group didn’t differ from the control (84.2±5 mg). The MuRF1 mRNA expression was elevated dramatically in HS group (165 (138-210) %) when compared with the control (100 (64.6-112.5) %), p<0.05.  In the VX group the level of MuRF1 mRNA expression (127 (105-138) %) didn’t differ from the control group. The MAFbx mRNA expression was observed to increase equally in both suspended groups (294 (265-342) % and (271 (239-309) %).) vs C (100 (91-106) %) so, VX-745 administration did not have any significant effect on its expression. We also found that the level of ubiquitin mRNA expression in the soleus of HS rats was higher (423 (325-485) %) in comparison with the C group (100 (78-166) %, p<0.05) while VX-745 injection prevented increasing the  mRNA ubiquitin expression (200 (190-237) %). We discovered that the elevation of calpain-1 mRNA expression upon HS was prevented by VX-745 administration and its level didn’t differ from the control group (C - 100 (97-105) %, HS – 120 (116-133) %, VX - 107 (100-115) %, p<0.05). Conclusions Thus, the results indicate that the p38 MAPK signaling pathway takes part in the regulation of E3-ligase MuRF1 but not MAFbx expression. The p38 MAPK inhibition prevents muscle atrophy and the elevation of ubiquitin and calpain mRNA expression at the early stage of hindlimb unloading. This work was supported by RFBR grant No.17-04-01838.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2419 ◽  
Author(s):  
Minson Kweon ◽  
Hyejin Lee ◽  
Cheol Park ◽  
Yung Hyun Choi ◽  
Jae-Ha Ryu

Ashitaba, Angelica keiskei Koidzumi (AK), as a traditional medicine in Korea, Japan, and China, has been known as an elixir of life having therapeutic potential. However, there is no scientific evidence to support that Ashitaba can enhance or maintain muscle strength. To find a new therapeutic agent from the medicinal plant, we evaluated the anti-myopathy effect of chalcones from ethanol extract of AK (EAK) in cellular and animal models of muscle atrophy. To examine anti-myopathy activity, EAK was treated into dexamethasone injected rats and muscle thickness and histopathological images were analyzed. Oral administration of EAK (250 or 500 mg/kg) alleviated muscle atrophic damages and down-regulated the mRNA levels of muscle-specific ubiquitin-E3 ligases. Among ten compounds isolated from EAK, 4-hydroxyderricin was the most effective principle in stimulating myogenesis of C2C12 myoblasts via activation of p38 mitogen-activated protein kinase (MAPK). In three cellular muscle atrophy models with C2C12 myoblasts damaged by dexamethasone or cancer cell-conditioned medium, 4-hydroxyderricin protected the myosin heavy chain (MHC) degradation through suppressing expressions of MAFbx, MuRF-1 and myostatin. These results suggest that the ethanol extract and its active principle, 4-hydroxyderricin from AK, can overcome the muscle atrophy through double mechanisms of decreasing muscle protein degradation and activating myoblast differentiation.


2019 ◽  
Vol 20 (20) ◽  
pp. 5130 ◽  
Author(s):  
Shunshun Han ◽  
Can Cui ◽  
Haorong He ◽  
Xiaoxu Shen ◽  
Yuqi Chen ◽  
...  

Myoferlin (MyoF), which is a calcium/phospholipid-binding protein expressed in cardiac and muscle tissues, belongs to the ferlin family. While MyoF promotes myoblast differentiation, the underlying mechanisms remain poorly understood. Here, we found that MyoF not only promotes C2C12 myoblast differentiation, but also inhibits muscle atrophy and autophagy. In the present study, we found that myoblasts fail to develop into mature myotubes due to defective differentiation in the absence of MyoF. Meanwhile, MyoF regulates the expression of atrophy-related genes (Atrogin-1 and MuRF1) to rescue muscle atrophy. Furthermore, MyoF interacts with Dishevelled-2 (Dvl-2) to activate canonical Wnt signaling. MyoF facilitates Dvl-2 ubiquitination resistance by reducing LC3-labeled Dvl-2 levels and antagonizing the autophagy system. In conclusion, we found that MyoF plays an important role in myoblast differentiation during skeletal muscle atrophy. At the molecular level, MyoF protects Dvl-2 against autophagy-mediated degradation, thus promoting activation of the Wnt/β-catenin signaling pathway. Together, our findings suggest that MyoF, through stabilizing Dvl-2 and preventing autophagy, regulates Wnt/β-catenin signaling-mediated skeletal muscle development.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2724 ◽  
Author(s):  
Hyejin Lee ◽  
Ji-Won Heo ◽  
A-Reum Kim ◽  
Minson Kweon ◽  
Sorim Nam ◽  
...  

Skeletal muscle atrophy is one of the major symptoms of cancer cachexia. Garlic (Allium sativum), one of the world’s most commonly used and versatile herbs, has been employed for the prevention and treatment of diverse diseases for centuries. In the present study, we found that ajoene, a sulfur compound found in crushed garlic, exhibits protective effects against muscle atrophy. Using CT26 tumor-bearing BALB/c mice, we demonstrate in vivo that ajoene extract alleviated muscle degradation by decreasing not only myokines secretion but also janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) and SMADs/forkhead box (FoxO) signaling pathways, thereby suppressing muscle-specific E3 ligases. In mouse skeletal myoblasts, Z-ajoene enhanced myogenesis as evidenced by increased expression of myogenic markers via p38 mitogen-activated protein kinase (MAPK) activation. In mature myotubes, Z-ajoene protected against muscle protein degradation induced by conditioned media from CT26 colon carcinoma cells, by suppressing expression of muscle specific E3 ligases and nuclear transcription factor kappa B (NF-κB) phosphorylation which contribute to muscle atrophy. Moreover, Z-ajoene treatment improved myofiber formation via stimulation of muscle protein synthesis. These findings suggest that ajoene extract and Z-ajoene can attenuate skeletal muscle atrophy induced by cancer cachexia through suppressing inflammatory responses and the muscle wasting as well as by promoting muscle protein synthesis.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Tsun-Li Cheng ◽  
Zi-Yun Lin ◽  
Keng-Ying Liao ◽  
Wei-Chi Huang ◽  
Cian-Fen Jhuo ◽  
...  

Magnesium lithospermate B (MLB) is a primary hydrophilic component of Danshen, the dried root of Salvia miltiorrhiza used in traditional medicine, and its beneficial effects on obesity-associated metabolic abnormalities were reported in our previous study. The present study investigated the anti-muscle atrophy potential of MLB in mice with high-fat diet (HFD)-induced obesity. In addition to metabolic abnormalities, the HFD mice had a net loss of skeletal muscle weight and muscle fibers and high levels of muscle-specific ubiquitin E3 ligases, namely the muscle atrophy F-box (MAFbx) and muscle RING finger protein 1 (MuRF-1). MLB supplementation alleviated those health concerns. Parallel changes were revealed in high circulating tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), skeletal TNF receptor I (TNFRI), nuclear factor-kappa light chain enhancer of activated B cells (NF-κB), p65 phosphorylation, and Forkhead box protein O1 (FoxO1) as well as low skeletal phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) phosphorylation. The study revealed that MLB prevented obesity-associated skeletal muscle atrophy, likely through the inhibition of MAFbx/MuRF-1-mediated muscular degradation. The activation of the PI3K-Akt-FoxO1 pathway and inhibition of the TNF-α/TNFRI/NF-κB pathway were assumed to be beneficial effects of MLB.


2020 ◽  
Vol 129 (2) ◽  
pp. 272-282 ◽  
Author(s):  
Sue C. Bodine

Skeletal muscle atrophy continues to be a serious consequence of many diseases and conditions for which there is no treatment. Our understanding of the mechanisms regulating skeletal muscle mass has improved considerably over the past two decades. For many years it was known that skeletal muscle atrophy resulted from an imbalance between protein synthesis and protein breakdown, with the net balance shifting toward protein breakdown. However, the molecular and cellular mechanisms underlying the increased breakdown of myofibrils was unknown. Over the past two decades, numerous reports have identified novel genes and signaling pathways that are upregulated and activated in response to stimuli such as disuse, inflammation, metabolic stress, starvation and others that induce muscle atrophy. This review summarizes the discovery efforts performed in the identification of several pathways involved in the regulation of skeletal muscle mass: the mammalian target of rapamycin (mTORC1) and the ubiquitin proteasome pathway and the E3 ligases, MuRF1 and MAFbx. While muscle atrophy is a common outcome of many diseases, it is doubtful that a single gene or pathway initiates or mediates the breakdown of myofibrils. Interestingly, however, is the observation that upregulation of the E3 ligases, MuRF1 and MAFbx, is a common feature of many divergent atrophy conditions. The challenge for the field of muscle biology is to understand how all of the various molecules, transcription factors, and signaling pathways interact to produce muscle atrophy and to identify the critical factors for intervention.


2019 ◽  
Author(s):  
RA Seaborne ◽  
DC Hughes ◽  
DC Turner ◽  
DJ Owens ◽  
LM Baehr ◽  
...  

AbstractWe aimed to investigate a novel and uncharacterised E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 versus well characterised E3-ligases, MuRF1/MAFbx, where after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post tetrodotoxin (TTX) induced-atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, while a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, and after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in-vitro, and after chronic electrical-stimulation-induced hypertrophy in rats in-vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 SNPs) demonstrated that the A alleles of rs10505025 and rs4734621 SNPs in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power versus endurance/untrained phenotypes. Overall, we suggest that UBR5 is a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx, is epigenetically regulated, and is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.Key PointsWe have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining.In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy.We demonstrated that UBR5 was epigenetically via altered DNA methylation during recovery from atrophy.We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy.UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation.Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes.


2009 ◽  
Vol 296 (6) ◽  
pp. C1258-C1270 ◽  
Author(s):  
Anne Ulrike Trendelenburg ◽  
Angelika Meyer ◽  
Daisy Rohner ◽  
Joseph Boyle ◽  
Shinji Hatakeyama ◽  
...  

Myostatin is a negative regulator of skeletal muscle size, previously shown to inhibit muscle cell differentiation. Myostatin requires both Smad2 and Smad3 downstream of the activin receptor II (ActRII)/activin receptor-like kinase (ALK) receptor complex. Other transforming growth factor-β (TGF-β)-like molecules can also block differentiation, including TGF-β1, growth differentiation factor 11 (GDF-11), activins, bone morphogenetic protein 2 (BMP-2) and BMP-7. Myostatin inhibits activation of the Akt/mammalian target of rapamycin (mTOR)/p70S6 protein synthesis pathway, which mediates both differentiation in myoblasts and hypertrophy in myotubes. Blockade of the Akt/mTOR pathway, using small interfering RNA to regulatory-associated protein of mTOR (RAPTOR), a component of TOR signaling complex 1 (TORC1), increases myostatin-induced phosphorylation of Smad2, establishing a myostatin signaling-amplification role for blockade of Akt. Blockade of RAPTOR also facilitates myostatin's inhibition of muscle differentiation. Inhibition of TORC2, via rapamycin-insensitive companion of mTOR (RICTOR), is sufficient to inhibit differentiation on its own. Furthermore, myostatin decreases the diameter of postdifferentiated myotubes. However, rather than causing upregulation of the E3 ubiquitin ligases muscle RING-finger 1 ( MuRF1) and muscle atrophy F-box ( MAFbx), previously shown to mediate skeletal muscle atrophy, myostatin decreases expression of these atrophy markers in differentiated myotubes, as well as other genes normally upregulated during differentiation. These findings demonstrate that myostatin signaling acts by blocking genes induced during differentiation, even in a myotube, as opposed to activating the distinct “atrophy program.” In vivo, inhibition of myostatin increases muscle creatine kinase activity, coincident with an increase in muscle size, demonstrating that this in vitro differentiation measure is also upregulated in vivo.


2020 ◽  
Vol 21 (24) ◽  
pp. 9344
Author(s):  
Juan Carlos Rivera ◽  
Johanna Abrigo ◽  
Franco Tacchi ◽  
Felipe Simon ◽  
Enrique Brandan ◽  
...  

Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes a severe muscle function reduction. The increased autophagy contributes to sepsis-induced skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux, and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown. In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6 wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl. This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12 cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio, autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2) phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7) prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex involved at the beginning of autophagy.


Endocrinology ◽  
2017 ◽  
Vol 159 (1) ◽  
pp. 519-534 ◽  
Author(s):  
Chiel C de Theije ◽  
Annemie M W J Schols ◽  
Wouter H Lamers ◽  
Judith J M Ceelen ◽  
Rick H van Gorp ◽  
...  

Abstract Hypoxemia may contribute to muscle wasting in conditions such as chronic obstructive pulmonary disease. Muscle wasting develops when muscle proteolysis exceeds protein synthesis. Hypoxia induces skeletal muscle atrophy in mice, which can in part be attributed to reduced food intake. We hypothesized that hypoxia elevates circulating corticosterone concentrations by reduced food intake and enhances glucocorticoid receptor (GR) signaling in muscle, which causes elevated protein degradation signaling and dysregulates protein synthesis signaling during hypoxia-induced muscle atrophy. Muscle-specific GR knockout and control mice were subjected to normoxia, normobaric hypoxia (8% oxygen), or pair-feeding to the hypoxia group for 4 days. Plasma corticosterone and muscle GR signaling increased after hypoxia and pair-feeding. GR deficiency prevented muscle atrophy by pair-feeding but not by hypoxia. GR deficiency differentially affected activation of ubiquitin 26S-proteasome and autophagy proteolytic systems by pair-feeding and hypoxia. Reduced food intake suppressed mammalian target of rapamycin complex 1 (mTORC1) activity under normoxic but not hypoxic conditions, and this retained mTORC1 activity was mediated by GR. We conclude that GR signaling is required for muscle atrophy and increased expression of proteolysis-associated genes induced by decreased food intake under normoxic conditions. Under hypoxic conditions, muscle atrophy and elevated gene expression of the ubiquitin proteasomal system–associated E3 ligases Murf1 and Atrogin-1 are mostly independent of GR signaling. Furthermore, impaired inhibition of mTORC1 activity is GR-dependent in hypoxia-induced muscle atrophy.


Sign in / Sign up

Export Citation Format

Share Document