scholarly journals Functional Aspects of Seminal Plasma in Bird Reproduction

2020 ◽  
Vol 21 (16) ◽  
pp. 5664
Author(s):  
Julian Santiago-Moreno ◽  
Elisabeth Blesbois

This review provides an updated overview of the seminal plasma composition, and the role of metabolic and protein components on the sperm function of avian species. In addition, the implication of seminal plasma on assisted reproductive techniques of birds was discussed. The semen of birds usually has exceptionally high sperm concentration with relatively little seminal plasma, but this contributes to very fast changes in sperm metabolism and function. The biochemical characteristics and physiological roles of the various seminal plasma components in birds (carbohydrates, lipids, amino acids, hormones, and proteins) are poorly understood. Seminal plasma content of proteins has an action on most cellular functions: metabolism, immunity, oxido-reduction regulation, proteolysis, apoptosis, ion homeostasis, and antimicrobial defenses. The variable amount of many proteins is related to a different fertility capacity of poultry sperm. The role of seminal plasma on semen conservation (chilling and freezing) remains largely a matter of speculation, as both inhibitory and stimulating effects have been found. Whereas the presence of seminal plasma did not seem to affect the sperm survival after freezing–thawing, DNA fragmentation is lower in the absence of seminal plasma. The molecular basis of the influence of seminal plasma on sperm cryo-resistance was also discussed in the present review.

2021 ◽  
Vol 55 (S3) ◽  
pp. 65-86

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Marisa Vulcano ◽  
María Gabriela Lombardi ◽  
María Elena Sales

Besides being the main neurotransmitter in the parasympathetic nervous system, acetylcholine (ACh) can act as a signaling molecule in nonneuronal tissues. For this reason, ACh and the enzymes that synthesize and degrade it (choline acetyltransferase and acetylcholinesterase) as well as muscarinic (mAChRs) and nicotinic receptors conform the non-neuronal cholinergic system (nNCS). It has been reported that nNCS regulates basal cellular functions including survival, proliferation, adhesion, and migration. Moreover, nNCS is broadly expressed in tumors and in different components of the immune system. In this review, we summarize the role of nNCS in tumors and in different immune cell types focusing on the expression and function of mAChRs in breast tumors and dendritic cells (DCs) and discussing the role of DCs in breast cancer.


2019 ◽  
Vol 11 (10) ◽  
pp. 880-885 ◽  
Author(s):  
Hendrik Täuber ◽  
Stefan Hüttelmaier ◽  
Marcel Köhn

Abstract A large variety of eukaryotic small structured POLIII-derived non-coding RNAs (ncRNAs) have been described in the past. However, for only few, e.g. 7SL and H1/MRP families, cellular functions are well understood. For the vast majority of these transcripts, cellular functions remain unknown. Recent findings on the role of Y RNAs and other POLIII-derived ncRNAs suggest an evolutionarily conserved function of these ncRNAs in the assembly and function of ribonucleoprotein complexes (RNPs). These RNPs provide cellular `machineries’, which are essential for guiding the fate and function of a variety of RNAs. In this review, we summarize current knowledge on the role of POLIII-derived ncRNAs in the assembly and function of RNPs. We propose that these ncRNAs serve as scaffolding factors that `chaperone’ RNA-binding proteins (RBPs) to form functional RNPs. In addition or associated with this role, some small ncRNAs act as molecular decoys impairing the RBP-guided control of RNA fate by competing with other RNA substrates. This suggests that POLIII-derived ncRNAs serve essential and conserved roles in the assembly of larger RNPs and thus the control of gene expression by indirectly guiding the fate of mRNAs and lncRNAs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Justyna Szczykutowicz ◽  
Anna Kałuża ◽  
Maria Kaźmierowska-Niemczuk ◽  
Mirosława Ferens-Sieczkowska

For human infertility both male and female factors may be equally important. Searching for molecular biomarkers of male infertility, neglected for decades, and the attempts to explain regulatory mechanisms of fertilization become thus extremely important. Apart from examination of the structure and function of male gametes, also the possible importance of seminal plasma components should be considered. In this article we discuss data that indicate for the substantial significance of active seminal plasma components for conception and achievement of healthy pregnancy. Seminal plasma impact on the storage and cryopreservation of human and animal sperm and regulatory role of glycodelin on human sperm capacitation as well as hypothesized course of female immune response to allogenic sperm and conceptus has been discussed. The possible involvement of carbohydrates in molecular mechanism of fetoembryonic defense has been also mentioned.


1988 ◽  
Vol 1 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Rodrigo O. Kuljis ◽  
Harvey J. Karten

AbstractRecent immunocytochemical studies indicate the existence of several classes of peptide- (PRGC) and catecholamine-containing retinal ganglion cells in anurans, birds, and mammals. Different classes of PRGC project to discrete and seemingly unique layers in the retino-recipient portion of the anuran and avian optic tectum. Peptide-containing retinofugal projections to the frog tectum originate early in development, and are reestablished by some classes of PRGC during regeneration of the optic nerve. These findings indicate that chemically specific, parallel retinofugal pathways presumably subserve different functional aspects of vision in vertebrates. Exciting prospects for research include the correlation of physiologically with immunocytochemically defined classes of retinal ganglion cells, the analysis of the possible role of neuroactive peptides in retinofugal transmission, and the pharmacological manipulation of putative peptidergic retinofugal pathways to analyze their role in visual function.


2015 ◽  
Vol 308 (4) ◽  
pp. H259-H268 ◽  
Author(s):  
Yasuhiro Maejima ◽  
Yun Chen ◽  
Mitsuaki Isobe ◽  
Åsa B. Gustafsson ◽  
Richard N. Kitsis ◽  
...  

Dysregulation of autophagy, an evolutionarily conserved process for degradation of long-lived proteins and organelles, has been implicated in the pathogenesis of human disease. Recent research has uncovered pathways that control autophagy in the heart and molecular mechanisms by which alterations in this process affect cardiac structure and function. Although initially thought to be a nonselective degradation process, autophagy, as it has become increasingly clear, can exhibit specificity in the degradation of molecules and organelles, such as mitochondria. Furthermore, it has been shown that autophagy is involved in a wide variety of previously unrecognized cellular functions, such as cell death and metabolism. A growing body of evidence suggests that deviation from appropriate levels of autophagy causes cellular dysfunction and death, which in turn leads to heart disease. Here, we review recent advances in understanding the role of autophagy in heart disease, highlight unsolved issues, and discuss the therapeutic potential of modulating autophagy in heart disease.


2020 ◽  
Vol 40 (7) ◽  
Author(s):  
Yuan Liu ◽  
Yusheng Dou ◽  
Liang Yan ◽  
Xiaobin Yang ◽  
Baorong He ◽  
...  

Abstract Recently, Rho GTPases substrates include Rac (Rac1 and Rac2) and Cdc42 that have been reported to exert multiple cellular functions in osteoclasts, the most prominent of which includes regulating the dynamic actin cytoskeleton rearrangements. In addition, natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Although currently, there are reports about the natural product, which could play a therapeutic role in bone loss diseases (osteoporosis and osteolysis) through the regulation of Rac1/2 and Cdc42 during osteoclasts cytoskeletal structuring. There have been several excellent studies for exploring the therapeutic potentials of various natural products for their role in inhibiting cancer cells migration and function via regulating the Rac1/2 and Cdc42. Herein in this review, we try to focus on recent advancement studies for extensively understanding the role of Rho GTPases substrates Rac1, Rac2 and Cdc42 in osteoclastogenesis, as well as therapeutic potentials of natural medicinal products for their properties on the regulation of Rac1, and/or Rac2 and Cdc42, which is in order to inspire drug discovery in regulating osteoclastogenesis.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Nicole Rusca ◽  
Silvia Monticelli

MicroRNAs (miRNAs) are regulatory molecules able to influence all aspects of the biology of a cell. They have been associated with diseases such as cancer, viral infections, and autoimmune diseases, and in recent years, they also emerged as important regulators of immune responses. MiR-146a in particular is rapidly gaining importance as a modulator of differentiation and function of cells of the innate as well as adaptive immunity. Given its importance in regulating key cellular functions, it is not surprising that miR-146a expression was also found dysregulated in different types of tumors. In this paper, we summarize recent progress in understanding the role of miR-146a in innate and adaptive immune responses, as well as in disease.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 949 ◽  
Author(s):  
Anne Marie Uwitonze ◽  
Nkemcho Ojeh ◽  
Julienne Murererehe ◽  
Azeddine Atfi ◽  
Mohammed S. Razzaque

Zinc, a metal found in the Earth’s crust, is indispensable for human health. In the human body, around 60% of zinc is present in muscles, 30% in bones, and the remaining 10% in skin, hair, pancreas, kidneys and plasma. An adequate zinc balance is essential for the maintenance of skeletal growth, development and function. It is also necessary for basic cellular functions including enzyme activation, cell signaling and energy metabolism. Inadequate zinc status is associated with a wide variety of systemic disorders including cardiovascular impairment, musculoskeletal dysfunctions and oromaxillary diseases. In this article, we briefly discuss the role of zinc deficiency in the genesis of various oromaxillary diseases, and explain why adequate zinc homeostasis is vital for the maintenance of oral and general health.


2019 ◽  
Vol 47 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Stephanie L. Begg

AbstractMetal ions fulfil a plethora of essential roles within bacterial pathogens. In addition to acting as necessary cofactors for cellular proteins, making them indispensable for both protein structure and function, they also fulfil roles in signalling and regulation of virulence. Consequently, the maintenance of cellular metal ion homeostasis is crucial for bacterial viability and pathogenicity. It is therefore unsurprising that components of the immune response target and exploit both the essentiality of metal ions and their potential toxicity toward invading bacteria. This review provides a brief overview of the transition metal ions iron, manganese, copper and zinc during infection. These essential metal ions are discussed in the context of host modulation of bioavailability, bacterial acquisition and efflux, metal-regulated virulence factor expression and the molecular mechanisms that contribute to loss of viability and/or virulence during host-imposed metal stress.


Sign in / Sign up

Export Citation Format

Share Document