human diseases
Recently Published Documents


TOTAL DOCUMENTS

2857
(FIVE YEARS 882)

H-INDEX

137
(FIVE YEARS 17)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 120
Author(s):  
Abdulmajeed Fahad Alrefaei ◽  
Muhammad Abu-Elmagd

LRP6 is a member of the low-density lipoprotein receptor superfamily of cell-surface receptors. It is required for the activation of the Wnt/β-catenin signalling pathway. LRP6 is detected in different tissue types and is involved in numerous biological activities such as cell proliferation, specification, metastatic cancer, and embryonic development. LRP6 is essential for the proper development of different organs in vertebrates, such as Xenopus laevis, chickens, and mice. In human, LRP6 overexpression and mutations have been reported in multiple complex diseases including hypertension, atherosclerosis, and cancers. Clinical studies have shown that LRP6 is involved in various kinds of cancer, such as bladder and breast cancer. Therefore, in this review, we focus on the structure of LRP6 and its interactions with Wnt inhibitors (DKK1, SOST). We also discuss the expression of LRP6 in different model systems, with emphasis on its function in development and human diseases.


Author(s):  
Archna Ravi ◽  
Lavinia Palamiuc ◽  
Brooke M. Emerling

While organelles are individual compartments with specialized functions, it is becoming clear that organellar communication is essential for maintaining cellular homeostasis. This cooperation is carried out by various interactions taking place on the membranes of organelles. The membranes themselves contain a multitude of proteins and lipids that mediate these connections and one such class of molecules facilitating these relations are the phospholipids. There are several phospholipids, but the focus of this perspective is on a minor group called the phosphoinositides and specifically, phosphatidylinositol 4,5-bisphosphate (PI-4,5-P2). This phosphoinositide, on intracellular membranes, is largely generated by the non-canonical Type II PIPKs, namely, Phosphotidylinositol-5-phosphate-4-kinases (PI5P4Ks). These evolutionarily conserved enzymes are emerging as key stress response players in cells. Further, PI5P4Ks have been shown to modulate pathways by regulating organelle crosstalk, revealing roles in preserving metabolic homeostasis. Here we will attempt to summarize the functions of the PI5P4Ks and their product PI-4,5-P2 in facilitating inter-organelle communication and how they impact cellular health as well as their relevance to human diseases.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Wang ◽  
Chunjie Wu ◽  
Yu Du ◽  
Zhongwei Li ◽  
Minle Li ◽  
...  

AbstractCircular RNAs (circRNAs) are classified as noncoding RNAs because they are devoid of a 5’ end cap and a 3’ end poly (A) tail necessary for cap-dependent translation. However, increasing numbers of translated circRNAs identified through high-throughput RNA sequencing overlapping with polysome profiling indicate that this rule is being broken. CircRNAs can be translated in cap-independent mechanism, including IRES (internal ribosome entry site)-initiated pattern, MIRES (m6A internal ribosome entry site) -initiated patterns, and rolling translation mechanism (RCA). CircRNA-encoded proteins harbour diverse functions similar to or different from host proteins. In addition, they are linked to the modulation of human disease including carcinomas and noncarcinomas. CircRNA-related translatomics and proteomics have attracted increasing attention. This review discusses the progress and exclusive characteristics of circRNA translation and highlights the latest mechanisms and regulation of circRNA translatomics. Furthermore, we summarize the extensive functions and mechanisms of circRNA-derived proteins in human diseases, which contribute to a better understanding of intricate noncanonical circRNA translatomics and proteomics and their therapeutic potential in human diseases.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 347
Author(s):  
Dibyendu Dana ◽  
Tuhin Das ◽  
Athena Choi ◽  
Ashif I. Bhuiyan ◽  
Tirtha K. Das ◽  
...  

Cell cycle kinases represent an important component of the cell machinery that controls signal transduction involved in cell proliferation, growth, and differentiation. Nek2 is a mitotic Ser/Thr kinase that localizes predominantly to centrosomes and kinetochores and orchestrates centrosome disjunction and faithful chromosomal segregation. Its activity is tightly regulated during the cell cycle with the help of other kinases and phosphatases and via proteasomal degradation. Increased levels of Nek2 kinase can promote centrosome amplification (CA), mitotic defects, chromosome instability (CIN), tumor growth, and cancer metastasis. While it remains a highly attractive target for the development of anti-cancer therapeutics, several new roles of the Nek2 enzyme have recently emerged: these include drug resistance, bone, ciliopathies, immune and kidney diseases, and parasitic diseases such as malaria. Therefore, Nek2 is at the interface of multiple cellular processes and can influence numerous cellular signaling networks. Herein, we provide a critical overview of Nek2 kinase biology and discuss the signaling roles it plays in both normal and diseased human physiology. While the majority of research efforts over the last two decades have focused on the roles of Nek2 kinase in tumor development and cancer metastasis, the signaling mechanisms involving the key players associated with several other notable human diseases are highlighted here. We summarize the efforts made so far to develop Nek2 inhibitory small molecules, illustrate their action modalities, and provide our opinion on the future of Nek2-targeted therapeutics. It is anticipated that the functional inhibition of Nek2 kinase will be a key strategy going forward in drug development, with applications across multiple human diseases.


2022 ◽  
Author(s):  
Celina Reverdy ◽  
Gaetan Gitton ◽  
Xiangying Guan ◽  
Indranil Adhya ◽  
Rama Dumpati ◽  
...  

Among the sirtuin members, Sirt3 is one of the most important deacetylases as it regulates acetylation levels in mitochondria, which are linked to the metabolism of multiple organs and therefore involved in many types of human diseases such as age-related diseases, cancer, heart disease and metabolic diseases. In the current absence of any direct activator of Sirt3, the identification of new modulators could be a key step in the development of new therapeutics. Here we report the discovery of Sirt3 modulators thanks to DNA encoded library technology (ELT). The most enriched compounds after DEL selection against SIRT3 were evaluated according to their activity and affinity. Our best activator seems at least as potent as Honokiol (HKL) while the docking studies tend to show that our modulators probably interact with Sirt3 at an atypical site.


2022 ◽  
Vol 27 (1) ◽  
Author(s):  
Yitong Chen ◽  
Tingben Huang ◽  
Zhou Yu ◽  
Qiong Yu ◽  
Ying Wang ◽  
...  

AbstractSestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.


2022 ◽  
pp. 67-84
Author(s):  
Rohit Gundamaraju ◽  
Chandrabhan Rao ◽  
Naresh Poondla
Keyword(s):  
Ct Scan ◽  
Pet Ct ◽  

2022 ◽  
pp. 251-269
Author(s):  
Nedim Hacıosmanoğlu ◽  
Sıla Köse ◽  
Julian Ostaku ◽  
İlkay Çisil Köksaldi ◽  
Behide Saltepe ◽  
...  
Keyword(s):  

2022 ◽  
pp. 42-86
Author(s):  
Divya Adiga ◽  
G. Nadeem Khan ◽  
Sangavi Eswaran ◽  
S. Sriharikrishnaa ◽  
Sanjiban Chakrabarty ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document