scholarly journals Osteoprotective Effects of Loganic Acid on Osteoblastic and Osteoclastic Cells and Osteoporosis-Induced Mice

2020 ◽  
Vol 22 (1) ◽  
pp. 233
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
Seung Hee Yun ◽  
...  

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.

Author(s):  
Eunkuk Park ◽  
Jeonghyun Kim ◽  
Mun-Chang Kim ◽  
Subin Yeo ◽  
Jieun Kim ◽  
...  

Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of broken bones. Previous studies have demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing the osteoblast differentiation. A bioactive compound, Kukoamine B (KB), was identified from a fractionation of LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. For the in vivo experiments, KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.


2019 ◽  
Vol 20 (11) ◽  
pp. 2784 ◽  
Author(s):  
Eunkuk Park ◽  
Jeonghyun Kim ◽  
Mun-Chang Kim ◽  
Subin Yeo ◽  
Jieun Kim ◽  
...  

Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of fracture. Previous study has demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing osteoblast differentiation. A bioactive compound, kukoamine B (KB), was identified from fractionation of an LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. In vivo experiments revealed that KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1114
Author(s):  
Eunkuk Park ◽  
Chang Gun Lee ◽  
Jeonghyun Kim ◽  
Eunguk Lim ◽  
Seokjin Hwang ◽  
...  

Osteoporosis is a porous bone disease caused by bone density loss, which increases the risk of fractures. Cornus officinalis (CO) and Achyranthes japonica (AJ) have been used as traditional herbal medicine for various disorders in East Asia. Although the anti-osteoporotic effects of single extract of CO and AJ have already been reported, the synergistic effect of a combined mixture has not been studied. In this study, we investigated the effects of a CO and AJ herbal mixture on osteoporosis in in vitro and in vivo models. The results demonstrate that treatment with the CO and AJ mixture significantly promoted osteoblast differentiation of MC3T3-E1 mouse preosteoblasts through the upregulation of osteoblastic differentiation-associated genes such as alkaline phosphatase (Alpl), runt-related transcription factor 2 (Runx2), and bone gamma-carboxyglutamic acid-containing protein (Bglap), while the mixture significantly inhibited differentiation of osteoclasts isolated from primary-cultured mouse monocytes. In addition, oral administration of CO and AJ mixture significantly prevented bone mineral density loss and trabecular bone structures in an ovariectomy-induced osteoporotic mouse model. These results suggest that the combination treatment of CO and AJ mixture might be a beneficial therapy for osteoporosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minsun Kim ◽  
MinBeom Kim ◽  
Jae-Hyun Kim ◽  
SooYeon Hong ◽  
Dong Hee Kim ◽  
...  

Osteoporosis is characterized by a decrease in bone microarchitecture with an increased risk of fracture. Long-term use of primary treatments, such as bisphosphonates and selective estrogen receptor modulators, results in various side effects. Therefore, it is necessary to develop alternative therapeutics derived from natural products. Crataegus pinnatifida Bunge (CPB) is a dried fruit used to treat diet-induced indigestion, loss of appetite, and diarrhea. However, research into the effects of CPB on osteoclast differentiation and osteoporosis is still limited. In vitro experiments were conducted to examine the effects of CPB on RANKL-induced osteoclast differentiation in RAW 264.7 cells. Moreover, we investigated the effects of CPB on bone loss in the femoral head in an ovariectomized rat model using microcomputed tomography. In vitro, tartrate-resistant acid phosphatase (TRAP) staining results showed the number of TRAP-positive cells, and TRAP activity significantly decreased following CPB treatment. CPB also significantly decreased pit formation. Furthermore, CPB inhibited osteoclast differentiation by suppressing NFATc1, and c-Fos expression. Moreover, CPB treatment inhibited osteoclast-related genes, such as Nfatc1, Ca2, Acp5, mmp9, CtsK, Oscar, and Atp6v0d2. In vivo, bone mineral density and structure model index were improved by administration of CPB. In conclusion, CPB prevented osteoclast differentiation in vitro and prevented bone loss in vivo. Therefore, CPB could be a potential alternative medicine for bone diseases, such as osteoporosis.


Author(s):  
Rui Gong ◽  
Hong-Mei Xiao ◽  
Yin-Hua Zhang ◽  
Qi Zhao ◽  
Kuan-Jui Su ◽  
...  

Abstract Context Although metabolic profiles appear to play an important role in menopausal bone loss, the functional mechanisms by which metabolites influence bone mineral density (BMD) during menopause are largely unknown. Objective We aimed to systematically identify metabolites associated with BMD variation and their potential functional mechanisms in peri-/post-menopausal women. Design and Methods We performed serum metabolomic profiling and whole-genome sequencing for 517 perimenopausal (16%) and early postmenopausal (84%) women aged 41 to 64 years in this cross-sectional study. Partial least squares (PLS) regression and general linear regression analysis were applied to identify BMD-associated metabolites, and weighted gene co-expression network analysis was performed to construct co-functional metabolite modules. Furthermore, we performed Mendelian randomization analysis to identify causal relationships between BMD-associated metabolites and BMD variation. Finally, we explored the effects of a novel prominent BMD-associated metabolite on bone metabolism through both in vivo/in vitro experiments. Results Twenty metabolites and a co-functional metabolite module (consisting of fatty acids) were significantly associated with BMD variation. We found dodecanoic acid (DA), within the identified module, causally decreased total hip BMD. Subsequently, the in vivo experiments might support that dietary supplementation with DA could promote bone loss, as well as increase the osteoblast and osteoclast numbers in normal/ovariectomized mice. DA treatment differentially promoted osteoblast and osteoclast differentiation, especially for osteoclast differentiation at higher concentrations in vitro (e.g.,10, 100μM). Conclusions This study sheds light on metabolomic profiles associated with postmenopausal osteoporosis risk, highlighting the potential importance of fatty acids, as exemplified by DA, in regulating BMD.


2020 ◽  
Vol 13 (12) ◽  
pp. 468
Author(s):  
Mi-Hwa Kim ◽  
Hyung-Jin Lim ◽  
Seon Gyeong Bak ◽  
Eun-Jae Park ◽  
Hyun-Jae Jang ◽  
...  

Eudebeiolide B is a eudesmane-type sesquiterpenoid compound isolated from Salvia plebeia R. Br., and little is known about its biological activity. In this study, we investigated the effects of eudebeiolide B on osteoblast differentiation, receptor activator nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in vitro and ovariectomy-induced bone loss in vivo. Eudebeiolide B induced the expression of alkaline phosphatase (ALP) and calcium accumulation during MC3T3-E1 osteoblast differentiation. In mouse bone marrow macrophages (BMMs), eudebeiolide B suppressed RANKL-induced osteoclast differentiation of BMMs and bone resorption. Eudebeiolide B downregulated the expression of nuclear factor of activated T-cells 1 (NFATc1) and c-fos, transcription factors induced by RANKL. Moreover, eudebeiolide B attenuated the RANKL-induced expression of osteoclastogenesis-related genes, including cathepsin K (Ctsk), matrix metalloproteinase 9 (MMP9) and dendrocyte expressed seven transmembrane protein (DC-STAMP). Regarding the molecular mechanism, eudebeiolide B inhibited the phosphorylation of Akt and NF-κB p65. In addition, it downregulated the expression of cAMP response element-binding protein (CREB), Bruton’s tyrosine kinase (Btk) and phospholipase Cγ2 (PLCγ2) in RANKL-induced calcium signaling. In an ovariectomized (OVX) mouse model, intragastric injection of eudebeiolide B prevented OVX-induced bone loss, as shown by bone mineral density and contents, microarchitecture parameters and serum levels of bone turnover markers. Eudebeiolide B not only promoted osteoblast differentiation but inhibited RANKL-induced osteoclastogenesis through calcium signaling and prevented OVX-induced bone loss. Therefore, eudebeiolide B may be a new therapeutic agent for osteoclast-related diseases, including osteoporosis, rheumatoid arthritis and periodontitis.


2011 ◽  
Vol 208 (9) ◽  
pp. 1849-1861 ◽  
Author(s):  
Yu-Hsiang Hsu ◽  
Wei-Yu Chen ◽  
Chien-Hui Chan ◽  
Chih-Hsing Wu ◽  
Zih-Jie Sun ◽  
...  

IL-20 is a proinflammatory cytokine of the IL-10 family that is involved in psoriasis, rheumatoid arthritis, atherosclerosis, and stroke. However, little is known about the role of IL-20 in bone destruction. We explored the function of IL-20 in osteoclastogenesis and the therapeutic potential of anti–IL-20 monoclonal antibody 7E for treating osteoporosis. Higher serum IL-20 levels were detected in patients with osteopenia and osteoporosis and in ovariectomized (OVX) mice. IL-20 mediates osteoclastogenesis by up-regulating the receptor activator of NF-κB (RANK) expression in osteoclast precursor cells and RANK ligand (RANKL) in osteoblasts. 7E treatment completely inhibited osteoclast differentiation induced by macrophage colony-stimulating factor (M-CSF) and RANKL in vitro and protected mice from OVX-induced bone loss in vivo. Furthermore, IL-20R1–deficient mice had significantly higher bone mineral density (BMD) than did wild-type controls. IL-20R1 deficiency also abolished IL-20–induced osteoclastogenesis and increased BMD in OVX mice. We have identified a pivotal role of IL-20 in osteoclast differentiation, and we conclude that anti–IL-20 monoclonal antibody is a potential therapeutic for protecting against osteoporotic bone loss.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyosuke Sakaida ◽  
Kazuhiro Omori ◽  
Masaaki Nakayama ◽  
Hiroki Mandai ◽  
Saki Nakagawa ◽  
...  

Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-κB ligand (RANKL)–induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKCα/βII, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Gyhye Yoo ◽  
Ji-Hye Park ◽  
Yang-Ju Son ◽  
Chang Ho Lee ◽  
Chu Won Nho

Abstract Objectives Postmenopausal osteoporosis, a condition of low bone density consequent to decreased estrogen levels after menopause in women, is generally treated with hormone replacement therapy. However, long-term hormone use may cause critical side effects including breast cancer. Alternatively, phytoestrogens, which have similar structures to steroid hormones, are reported to cure postmenopausal symptoms with fewer side effects. Here, we investigated the effects of EtOH extract of Circaea mollis Siebold & Zucc. (EECM), a traditional herbal medicine in Asia that exhibits anti-arthritic activities, on postmenopausal osteoporosis. Methods In vitro model: MCF7 breast cancer cells and MC3T3-E1 pre-osteoblast cells were utilized to estimate estrogenic and osteogenic activity. Osteoblastic markers were measured by western blot and real-time PCR. In vivo model: Female mature C57BL/6 mice were ovariectomized and oral administrated with 10 mg/kg and 40 mg/kg of EECM respectively. Results EECM increased alkaline phosphatase activity and osteoblastic markers including osteoprotegerin at day 6 during mouse preosteoblast differentiation. EECM inhibited osteoclast differentiation and bone resorption in an osteoblast-osteoclast primary co-culture system via osteoprotegerin-mediated RANK/RANKL signaling. In ovariectomized mice, EECM prevented bone mineral density decrease and recovered osteoblastic molecules. Conclusions EECM enhanced the differentiation of osteoblasts via osteogenic markers and modulated RANK/RANKL signaling via an elevation of OPG from osteoblasts in vitro and in vivo. Therefore, EECM may be effective in preventing bone loss and offers a promising alternative for the nutritional management of postmenopausal osteoporosis. Funding Sources This work was supported by the Center Project for the Korea-Mongolia Science and Technology Cooperation (2U06170). Supporting Tables, Images and/or Graphs


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 369 ◽  
Author(s):  
Eunkuk Park ◽  
Eunguk Lim ◽  
Subin Yeo ◽  
Yoonjoong Yong ◽  
Junga Yang ◽  
...  

Natural herbal medicines have been developed for the treatment and prevention of women’s menopausal symptoms. In this study, we investigated the anti-menopausal effects of Cornus officinalis (CO) and Ribes fasciculatum (RF) extracts in 3T3-L1 preadipocytes, MC3T3-E1 preosteoblasts, and COV434 granulosa cells in vitro and ovariectomized (OVX) ddY mice in vivo. Combination treatment of CO and RF extract at 7:3 ratio inhibited lipid accumulation via Plin1 and Adipoq downregulation in a cocktail of dexamethasone, 3-isobutyl-1-methylxanthine, and insulin (DMI)-induced differentiated 3T3-L1 cells. In addition, CO + RF treatment significantly enhanced osteoblastic differentiation, with mineralized nodule formation occurring through the upregulation of osteoblast-inducing markers in osteoblastic MC3T3-E1 cells. Increased production of estradiol and mRNA expression of ERα (ESR1) were observed in androstenedione-induced COV434 granulosa cells treated with the CO + RF extract. In CO + RF-treated mice, fatty hepatocyte deposition and abdominal visceral fat tissues reduced with OVX-induced uterine atrophy. Furthermore, bone mineral density and bone mineral content were significantly enhanced by CO + RF in mouse models of ovariectomy-induced femoral bone loss. Taken together, our findings suggested that CO + RF promoted estrogenic activity and had anti-obesity and anti-osteoporotic effects in vitro and in vivo. Thus, a combination of CO and RF extracts may be a good therapeutic strategy for managing women’s menopausal syndromes.


Sign in / Sign up

Export Citation Format

Share Document