scholarly journals Molecular Details of the Frataxin–Scaffold Interaction during Mitochondrial Fe–S Cluster Assembly

2021 ◽  
Vol 22 (11) ◽  
pp. 6006
Author(s):  
Courtney J. Campbell ◽  
Ashley E. Pall ◽  
Akshata R. Naik ◽  
Lindsey N. Thompson ◽  
Timothy L. Stemmler

Iron–sulfur clusters are essential to almost every life form and utilized for their unique structural and redox-targeted activities within cells during many cellular pathways. Although there are three different Fe–S cluster assembly pathways in prokaryotes (the NIF, SUF and ISC pathways) and two in eukaryotes (CIA and ISC pathways), the iron–sulfur cluster (ISC) pathway serves as the central mechanism for providing 2Fe–2S clusters, directly and indirectly, throughout the entire cell in eukaryotes. Proteins central to the eukaryotic ISC cluster assembly complex include the cysteine desulfurase, a cysteine desulfurase accessory protein, the acyl carrier protein, the scaffold protein and frataxin (in humans, NFS1, ISD11, ACP, ISCU and FXN, respectively). Recent molecular details of this complex (labeled NIAUF from the first letter from each ISC protein outlined earlier), which exists as a dimeric pentamer, have provided real structural insight into how these partner proteins arrange themselves around the cysteine desulfurase, the core dimer of the (NIAUF)2 complex. In this review, we focus on both frataxin and the scaffold within the human, fly and yeast model systems to provide a better understanding of the biophysical characteristics of each protein alone and within the FXN/ISCU complex as it exists within the larger NIAUF construct. These details support a complex dynamic interaction between the FXN and ISCU proteins when both are part of the NIAUF complex and this provides additional insight into the coordinated mechanism of Fe–S cluster assembly.

2013 ◽  
Vol 825 ◽  
pp. 198-201 ◽  
Author(s):  
Jian She Liu ◽  
Lin Qian ◽  
Chun Li Zheng

Iron-sulfur (Fe-S) proteins are ubiquitous and participate in multiple essential functions of life. However, little is currently known about the mechanisms of iron-sulfur biosynthesis and transfer in acidophilic microorganisms. In this study, the IscS, IscU and IscA proteins from Acidithiobacillus ferrooxidans were successfully expressed in Escherichia coli and purified by affinity chromatography. The IscS was a cysteine desulfurase which catalyzes desulfurization of L-cysteine and transfer sulfur for iron-sulfur cluster assembly. Purified IscU did not have an iron-sulfur cluster but could act as a scaffold protein to assemble the [2Fe-2S] cluster in vitro. The IscA was a [4Fe-4S] cluster binding protein, but it also acted as an iron binding protein. Further studies indicated that the iron sulfur clusters could be transferred from pre-assembled scaffold proteins to apo-form iron sulfur proteins, the reconstituted iron sulfur proteins could restore their physiological activities.


2019 ◽  
Vol 7 (12) ◽  
pp. 671 ◽  
Author(s):  
Xin Nie ◽  
Bernhard Remes ◽  
Gabriele Klug

A multitude of biological functions relies on iron-sulfur clusters. The formation of photosynthetic complexes goes along with an additional demand for iron-sulfur clusters for bacteriochlorophyll synthesis and photosynthetic electron transport. However, photooxidative stress leads to the destruction of iron-sulfur clusters, and the released iron promotes the formation of further reactive oxygen species. A balanced regulation of iron-sulfur cluster synthesis is required to guarantee the supply of this cofactor, on the one hand, but also to limit stress, on the other hand. The phototrophic alpha-proteobacterium Rhodobacter sphaeroides harbors a large operon for iron-sulfur cluster assembly comprising the iscRS and suf genes. IscR (iron-sulfur cluster regulator) is an iron-dependent regulator of isc-suf genes and other genes with a role in iron metabolism. We applied reporter gene fusions to identify promoters of the isc-suf operon and studied their activity alone or in combination under different conditions. Gel-retardation assays showed the binding of regulatory proteins to individual promoters. Our results demonstrated that several promoters in a sense and antisense direction influenced isc-suf expression and the binding of the IscR, Irr, and OxyR regulatory proteins to individual promoters. These findings demonstrated a complex regulatory network of several promoters and regulatory proteins that helped to adjust iron-sulfur cluster assembly to changing conditions in Rhodobacter sphaeroides.


2008 ◽  
Vol 36 (6) ◽  
pp. 1112-1119 ◽  
Author(s):  
Sibali Bandyopadhyay ◽  
Kala Chandramouli ◽  
Michael K. Johnson

Iron–sulfur (Fe–S) clusters are present in more than 200 different types of enzymes or proteins and constitute one of the most ancient, ubiquitous and structurally diverse classes of biological prosthetic groups. Hence the process of Fe–S cluster biosynthesis is essential to almost all forms of life and is remarkably conserved in prokaryotic and eukaryotic organisms. Three distinct types of Fe–S cluster assembly machinery have been established in bacteria, termed the NIF, ISC and SUF systems, and, in each case, the overall mechanism involves cysteine desulfurase-mediated assembly of transient clusters on scaffold proteins and subsequent transfer of pre-formed clusters to apo proteins. A molecular level understanding of the complex processes of Fe–S cluster assembly and transfer is now beginning to emerge from the combination of in vivo and in vitro approaches. The present review highlights recent developments in understanding the mechanism of Fe–S cluster assembly and transfer involving the ubiquitous U-type scaffold proteins and the potential roles of accessory proteins such as Nfu proteins and monothiol glutaredoxins in the assembly, storage or transfer of Fe–S clusters.


2014 ◽  
Vol 459 (3) ◽  
pp. 467-478 ◽  
Author(s):  
Jan Rybniker ◽  
Florence Pojer ◽  
Jan Marienhagen ◽  
Gaëlle S. Kolly ◽  
Jeffrey M. Chen ◽  
...  

IscS of Mycobacterium tuberculosis is an essential component of iron–sulfur cluster assembly conferring resistance to oxidative stress. The strongly altered surface structure and the extensive protein-interaction network identified in the present study mirrors adaptations made in response to a heavily depleted mycobacterial ISC operon.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicholas G. Fox ◽  
Xiaodi Yu ◽  
Xidong Feng ◽  
Henry J. Bailey ◽  
Alain Martelli ◽  
...  

2013 ◽  
Vol 368 (1622) ◽  
pp. 20120259 ◽  
Author(s):  
Delphine G. Bernard ◽  
Daili J. A. Netz ◽  
Thibaut J. Lagny ◽  
Antonio J. Pierik ◽  
Janneke Balk

The assembly of iron–sulfur (Fe–S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe–S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe–4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe–S cluster assembly pathway, dre2 , with the Arabidopsis homologue AtDRE2 , but only when expressed together with the diflavin reductase AtTAH18 . Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe–S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe–S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sven-A. Freibert ◽  
Michal T. Boniecki ◽  
Claudia Stümpfig ◽  
Vinzent Schulz ◽  
Nils Krapoth ◽  
...  

AbstractSynthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined. Our structural, biochemical and cell biological experiments now identify a crucial function of the universally conserved N-terminal Tyr35 of ISCU2 for these late reactions. Mixing two, per se non-functional ISCU2 mutant proteins with oppositely charged Asp35 and Lys35 residues, both bound to different cysteine desulfurase complexes NFS1-ISD11-ACP, restores wild-type ISCU2 maturation demonstrating that ionic forces can replace native Tyr-Tyr interactions during dimerization-induced [2Fe-2S] cluster formation. Our studies define the essential mechanistic role of Tyr35 in the reaction cycle of de novo mitochondrial [2Fe-2S] cluster synthesis.


Sign in / Sign up

Export Citation Format

Share Document