scholarly journals Synthesis of Vertically Aligned Porous Silica Thin Films Functionalized by Silver Ions

2021 ◽  
Vol 22 (14) ◽  
pp. 7505
Author(s):  
Andrii Fedorchuk ◽  
Alain Walcarius ◽  
Magdalena Laskowska ◽  
Neus Vila ◽  
Paweł Kowalczyk ◽  
...  

In this work, we have developed a chemical procedure enabling the preparation of highly ordered and vertically aligned mesoporous silica films containing selected contents of silver ions bonded inside the mesopore channels via anchoring propyl-carboxyl units. The procedure involves the electrochemically assisted self-assembly co-condensation of tetraethoxysilane and (3-cyanopropyl)triethoxysilane in the presence of cetyltrimethylammonium bromide as a surfactant, the subsequent hydrolysis of cyano groups into carboxylate ones, followed by their complexation with silver ions. The output materials have been electrochemically characterized with regard to the synthesis effectiveness in order to confirm and quantify the presence of the silver ions in the material. The mesostructure has been observed by transmission electron microscopy. We have pointed out that it is possible to finely tune the functionalization level by controlling the co-condensation procedure, notably the concentration of (3-cyanopropyl)triethoxysilane in the synthesis medium.

2021 ◽  
Author(s):  
Wahid Ullah ◽  
Gregoire Herzog ◽  
neus vila ◽  
Alain Walcarius

Indium-tin oxide electrodes modified with vertically aligned silica nanochannel membrane have been produced by electrochemically assisted self-assembly of cationic surfactants (cetyl- or octadecyl-trimethylammonium bromide) and concomitant polycondensation of the silica...


2012 ◽  
Vol 11 (06) ◽  
pp. 1240042
Author(s):  
NANZHE JIANG ◽  
CHENGBIN LI ◽  
SHIJUAN CHEN ◽  
GUANGXUE LIU ◽  
WAN MENG

Biopolymer chitosan templated bimodal porous silica materials with uniform macroporosity and narrowed mesopore size distribution were synthesized via fast precipitation of chitosan–silica hybrid composites (Chi/ SiO2 ). Clear Chi/ SiO2 solutions containing the biopolymer chitosan and siloxane-based inorganic network were prepared by hydrolysis of sodium metasilicate in the presence of biopolymer chitosan. The relative amount of chitosan in as-made Chi/ SiO2 was analyzed by thermogravimetric analysis (TGA). Chi/ SiO2 was calcined at 600°C for 5 h in the presence air to remove chitosan, and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and N2 adsorption–desorption isotherms. These porous silica products had high specific surface area of 500–550 m2/g, narrow pore size distribution and also bicontinuous macropore structure.


2017 ◽  
Vol 237 ◽  
pp. 227-236 ◽  
Author(s):  
Gianmarco Giordano ◽  
Neus Vilà ◽  
Emmanuel Aubert ◽  
Jaafar Ghanbaja ◽  
Alain Walcarius

2002 ◽  
Vol 728 ◽  
Author(s):  
Kui Yu ◽  
Bernd Smarsly ◽  
Jeffrey Brinker

AbstractMesostructured silica/diblock films with a 3D arrangement of spherical domains (bcc) were prepared through evaporation-induced self-assembly (EISA) using polystyrene-blockpoly( ethylene oxide) diblock copolymers as structure-directing agents and TEOS (Si(OCH2CH3)4) and/or MTES (Si(OCH2CH3)3CH3) as silica precursors. A detailed small angle x-ray scattering (SAXS) analysis of the calcined mesoporous films showed that, in contrast to recently reported studies, no additional microporosity due to the PEO was observed, indicating that the PEO block formed a layer at the interface between the PS domain and the silica matrix and thus contributed to the mesopore volume. These mesostructured porous silica films are believed to be the first in respect of isolated spheres with a 3D array distributed in a silica matrix without additional microporosity and with MTES as silica precursor. Such closed-cell mesostructured porous materials with high porosity and controllable hydrophobicity can be excellent candidates for low dielectric (K) insulator materials.


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


2018 ◽  
Author(s):  
Claudia Contini ◽  
Russell Pearson ◽  
Linge Wang ◽  
Lea Messager ◽  
Jens Gaitzsch ◽  
...  

<div><div><div><p>We report the design of polymersomes using a bottom-up approach where the self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)–poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We study this process in detail using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, dynamic light scattering (DLS), and stop-flow ab- sorbance disclosing the molecular and supramolecular anatomy of each structure observed. We report a clear evolution from disk micelles to vesicle to high-genus vesicles where each passage is controlled by pH switch or temperature. We show that the process can be rationalised adapting membrane physics theories disclosing important scaling principles that allow the estimation of the vesiculation minimal radius as well as chain entanglement and coupling. This allows us to propose a new approach to generate nanoscale vesicles with genus from 0 to 70 which have been very elusive and difficult to control so far.</p></div></div></div>


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


2004 ◽  
Vol 812 ◽  
Author(s):  
Nobutoshi Fujii ◽  
Kazuhiro Yamada ◽  
Yoshiaki Oku ◽  
Nobuhiro Hata ◽  
Yutaka Seino ◽  
...  

AbstractPeriodic 2-dimensional (2-D) hexagonal and the disordered pore structure silica films have been developed using nonionic surfactants as the templates. The pore structure was controlled by the static electrical interaction between the micelle of the surfactant and the silica oligomer. No X-ray diffraction peaks were observed for the disordered mesoporous silica films, while the pore diameters of 2.0-4.0 nm could be measured by small angle X-ray scattering spectroscopy. By comparing the properties of the 2-D hexagonal and the disordered porous silica films which have the same porosity, it is found that the disordered porous silica film has advantages in terms of the dielectric constant and Young's modulus as well as the hardness. The disordered porous silica film is more suitable for the interlayer dielectrics for ULSI.


1994 ◽  
Vol 351 ◽  
Author(s):  
Nir Kossovsky ◽  
A. Gelman ◽  
H.J. Hnatyszyn ◽  
E. Sponsler ◽  
G.-M. Chow

ABSTRACTIntrigued by the deceptive simplicity and beauty of macromolecular self-assembly, our laboratory began studying models of self-assembly using solids, glasses, and colloidal substrates. These studies have defined a fundamental new colloidal material for supporting members of a biochemically reactive pair.The technology, a molecular transportation assembly, is based on preformed carbon ceramic nanoparticles and self assembled calcium-phosphate dihydrate particles to which glassy carbohydrates are then applied as a nanometer thick surface coating. This carbohydrate coated core functions as a dehydroprotectant and stabilizes surface immobilized members of a biochemically reactive pair. The final product, therefore, consists of three layers. The core is comprised of the ceramic, the second layer is the dehydroprotectant carbohydrate adhesive, and the surface layer is the biochemically reactive molecule for which delivery is desired.We have characterized many of the physical properties of this system and have evaluated the utility of this delivery technology in vitro and in animal models. Physical characterization has included standard and high resolution transmission electron microscopy, electron and x-ray diffraction and ζ potential analysis. Functional assays of the ability of the system to act as a nanoscale dehydroprotecting delivery vehicle have been performed on viral antigens, hemoglobin, and insulin. By all measures at present, the favorable physical properties and biological behavior of the molecular transportation assembly point to an exciting new interdisciplinary area of technology development in materials science, chemistry and biology.


Sign in / Sign up

Export Citation Format

Share Document