scholarly journals Osseointegration of Sandblasted and Acid-Etched Implant Surfaces. A Histological and Histomorphometric Study in the Rabbit

2021 ◽  
Vol 22 (16) ◽  
pp. 8507
Author(s):  
Eugenio Velasco-Ortega ◽  
Iván Ortiz-Garcia ◽  
Alvaro Jiménez-Guerra ◽  
Enrique Núñez-Márquez ◽  
Jesús Moreno-Muñoz ◽  
...  

Titanium surface is an important factor in achieving osseointegration during the early wound healing of dental implants in alveolar bone. The purpose of this study was to evaluate sandblasted-etched surface implants to investigate the osseointegration. In the present study, we used two different types of sandblasted-etched surface implants, an SLA™ surface and a Nanoblast Plus™ surface. Roughness and chemical composition were evaluated by a white light interferometer microscope and X-ray photoelectron spectroscopy, respectively. The SLA™ surface exhibited the higher values (Ra 3.05 μm) of rugosity compared to the Nanoblast Plus™ surface (Ra 1.78 μm). Both types of implants were inserted in the femoral condyles of ten New Zealand white rabbits. After 12 weeks, histological and histomorphometric analysis was performed. All the implants were osseointegrated and no signs of infection were observed. Histomorphometric analysis revealed that the bone–implant contact % (BIC) ratio was similar around the SLA™ implants (63.74 ± 13.61) than around the Nanoblast Plus™ implants (62.83 ± 9.91). Both implant surfaces demonstrated a favorable bone response, confirming the relevance of the sandblasted-etched surface on implant osseointegration.

2018 ◽  
Vol 88 (5) ◽  
pp. 632-637 ◽  
Author(s):  
Kriangkrai Kraiwattanapong ◽  
Bancha Samruajbenjakun

ABSTRACT Objectives: To investigate the effects of light and heavy forces with corticotomy on tooth movement rate, alveolar bone response, and root resorption in a rat model. Materials and Methods: The right and left sides of 40 male Wistar rats were randomly assigned using the split-mouth design to two groups: light force with corticotomy (LF) and heavy force with corticotomy (HF). Tooth movement was performed on the maxillary first molars using a nickel-titanium closed-coil spring delivering either 10 g (light force) or 50 g (heavy force). Tooth movement and alveolar bone response were assessed by micro–computed tomography (micro-CT) at day 0 as the baseline and on days 7, 14, 21, and 28. Root resorption was examined by histomorphometric analysis at day 28. Results: Micro-CT analysis showed a significantly greater tooth movement in the HF group at days 7 and 14 but no difference in bone volume fraction at any of the observed periods. Histomorphometric analysis found no significant difference in root resorption between the LF and HF groups at day 28. Conclusions: Heavy force with corticotomy increased tooth movement at days 7 and 14 but did not show any difference in alveolar bone change or root resorption.


Author(s):  
Toru Deguchi ◽  
Masakazu Hasegawa ◽  
Masahiro Seiryu ◽  
Takayoshi Daimaruya ◽  
Teruko Takano-Yamamoto

Author(s):  
Julie A. Martini ◽  
Robert H. Doremus

Tracy and Doremus have demonstrated chemical bonding between bone and hydroxylapatite with transmission electron microscopy. Now researchers ponder how to improve upon this bond in turn improving the life expectancy and biocompatibility of implantable orthopedic devices.This report focuses on a study of the- chemical influences on the interfacial integrity and strength. Pure hydroxylapatite (HAP), magnesium doped HAP, strontium doped HAP, bioglass and medical grade titanium cylinders were implanted into the tibial cortices of New Zealand white rabbits. After 12 weeks, the implants were retrieved for a scanning electron microscopy study coupled with energy dispersive spectroscopy.Following sacrifice and careful retrieval, the samples were dehydrated through a graduated series starting with 50% ethanol and continuing through 60, 70, 80, 90, 95, and 100% ethanol over a period of two days. The samples were embedded in LR White. Again a graduated series was used with solutions of 50, 75 and 100% LR White diluted in ethanol.


2021 ◽  
Vol 11 (2) ◽  
pp. 723
Author(s):  
Amani M. Basudan ◽  
Marwa Y. Shaheen ◽  
Abdurahman A. Niazy ◽  
Jeroen J.J.P. van den Beucken ◽  
John A. Jansen ◽  
...  

The installation of dental implants has become a common treatment for edentulous patients. However, concern exists about the influence of osteoporosis on the final implant success. This study evaluated whether an ovariectomy (OVX)-induced osteoporotic condition, induced eight weeks postimplantation in a rat femoral condyle, influences the bone response to already-integrated implants. The implants were inserted in the femoral condyle of 16 female Wistar rats. Eight weeks postimplantation, rats were randomly ovariectomized (OVX) or sham-operated (SHAM). Fourteen weeks later, animals were sacrificed, and implants were used for histological and histomorphometric analyses. A significant reduction in the quantity and quality of trabecular bone around dental implants existed in OVX rats in comparison to the SHAM group. For histomorphometric analysis, the bone area (BA%) showed a significant difference between OVX (34.2 ± 4.3) and SHAM (52.6 ± 12.7) groups (p < 0.05). Bone–implant contact (BIC%) revealed significantly lower values for all implants in OVX (42.5 ± 20.4) versus SHAM (59.0 ± 19.0) rats. Therefore, induction of an osteoporotic condition eight weeks postimplantation in a rat model negatively affects the amount of bone present in close vicinity to bone implants.


2007 ◽  
Vol 52 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Yasuko Misawa ◽  
Toru Kageyama ◽  
Keita Moriyama ◽  
Saburo Kurihara ◽  
Hiroshi Yagasaki ◽  
...  

2021 ◽  
Vol 314 ◽  
pp. 302-306
Author(s):  
Quoc Toan Le ◽  
E. Kesters ◽  
M. Doms ◽  
Efrain Altamirano Sánchez

Different types of ALD Ru films, including as-deposited, annealed Ru, without and with a subsequent CMP step, were used for wet etching study. With respect to the as-deposited Ru, the etching rate of the annealed Ru film in metal-free chemical mixtures (pH = 7-9) was found to decrease substantially. X-ray photoelectron spectroscopy characterization indicated that this behavior could be explained by the presence of the formation of RuOx (x = 2,3) caused by the anneal. A short CMP step applied to the annealed Ru wafer removed the surface RuOx, at least partially, resulting in a significant increase of the etching rate. The change in surface roughness was quantified using atomic force microscopy.


2007 ◽  
Vol 361-363 ◽  
pp. 749-752
Author(s):  
J. Strnad ◽  
Jan Macháček ◽  
Z. Strnad ◽  
C. Povýšil ◽  
Marie Strnadová

This study was carried out to assess the bone response to alkali-modified titanium implant surface (Bio surface), using histomorphometric investigation on an animal model. The mean net contribution of the Bio surface to the increase in bone implant contact (BIC) with reference to the turned, machined surface was evaluated at 7.94 % (BIC/week), within the first five weeks of healing. The contribution was expressed as the difference in the osseointegration rates ( BIC/'healing time) between the implants with alkali modified surface (Bio surface) and those with turned, machined surface. The surface characteristics that differed between the implant surfaces, i.e. surface morphology, specific surface area, contact angle, hydroxylation/hydration, may represent factors that influence the rate of osseointegration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jung Il Lee ◽  
Anagha A. Gurjar ◽  
M. A. Hassan Talukder ◽  
Andrew Rodenhouse ◽  
Kristen Manto ◽  
...  

AbstractPeripheral nerve transection is associated with permanent functional deficit even after advanced microsurgical repair. While it is difficult to investigate the reasons of poor functional outcomes of microsurgical repairs in humans, we developed a novel pre-clinical nerve transection method that allows reliable evaluation of nerve regeneration, neural angiogenesis, muscle atrophy, and functional recovery. Adult male C57BL/6 mice were randomly assigned to four different types of sciatic nerve transection: Simple Transection (ST), Simple Transection & Glue (TG), Stepwise Transection and Sutures (SU), and Stepwise Transection and Glue (STG). Mice were followed for 28 days for sciatic function index (SFI), and sciatic nerves and hind limb muscles were harvested for histomorphological and cellular analyses. Immunohistochemistry revealed more directional nerve fiber growth in SU and STG groups compared with ST and TG groups. Compared to ST and TG groups, optimal neural vessel density and branching index in SU and STG groups were associated with significantly decreased muscle atrophy, increased myofiber diameter, and improved SFI. In conclusion, our novel STG method represents an easily reproducible and reliable model with close resemblance to the pathophysiological characteristics of SU model, and this can be easily reproduced by any lab.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 936 ◽  
Author(s):  
Wei-Kai Wang ◽  
Yu-Xiu Lin ◽  
Yi-Jie Xu

Yttrium fluoride (YF3) films were grown on sapphire substrate by a radio frequency magnetron using a commercial ceramic target in a vacuum chamber. The structure, composition, and plasma etching behavior of the films were systematically investigated. The YF3 film was deposited at a working pressure of 5 mTorr and an RF power of 150 W. The substrate-heating temperature was increased from 400 to 700 °C in increments of 100 °C. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction results confirmed an orthorhombic YF3 structure was obtained at a substrate temperature of 700 °C for 2 h. X-ray photoelectron spectroscopy revealed a strongly fluorinated bond (Y–F bond) on the etched surface of the YF3 films. HRTEM analysis also revealed that the YF3 films became yttrium-oxyfluorinated after exposure to fluorocarbon plasma. The etching depth was three times lower on YF3 film than on Al2O3 plate. These results showed that the YF3 films have excellent erosion resistance properties compared to Al2O3 plates.


Sign in / Sign up

Export Citation Format

Share Document