scholarly journals New Light on an Old Story: Breaking Kasha’s Rule in Phosphorescence Mechanism of Organic Boron Compounds and Molecule Design

2022 ◽  
Vol 23 (2) ◽  
pp. 876
Author(s):  
Dan Deng ◽  
Bingbing Suo ◽  
Wenli Zou

In this work, the phosphorescence mechanism of (E)-3-(((4-nitrophenyl)imino)methyl)-2H-thiochroman-4-olate-BF2 compound (S-BF2) is investigated theoretically. The phosphorescence of S-BF2 has been reassigned to the second triplet state (T2) by the density matrix renormalization group (DMRG) method combined with the multi-configurational pair density functional theory (MCPDFT) to approach the limit of theoretical accuracy. The calculated radiative and non-radiative rate constants support the breakdown of Kasha’s rule further. Our conclusion contradicts previous reports that phosphorescence comes from the first triplet state (T1). Based on the revised phosphorescence mechanism, we have purposefully designed some novel compounds in theory to enhance the phosphorescence efficiency from T2 by replacing substitute groups in S-BF2. Overall, both S-BF2 and newly designed high-efficiency molecules exhibit anti-Kasha T2 phosphorescence instead of the conventional T1 emission. This work provides a useful guidance for future design of high-efficiency green-emitting phosphors.

2019 ◽  
Vol 10 (6) ◽  
pp. 1716-1723 ◽  
Author(s):  
Prachi Sharma ◽  
Varinia Bernales ◽  
Stefan Knecht ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

The density matrix renormalization group (DMRG) is a powerful method to treat static correlation.


Author(s):  
Riddhish Pandharkar ◽  
Matthew R. Hermes ◽  
Christopher J. Cramer ◽  
Donald G. Truhlar ◽  
Laura Gagliardi

2004 ◽  
Vol 57 (12) ◽  
pp. 1197 ◽  
Author(s):  
Magdalene A. Addicoat ◽  
Mark A. Buntine ◽  
Gregory F. Metha

We report Density Functional Theory (DFT) calculations on mixed-metal tetramers comprised of the Group 5 (Vb) elements V, Nb, and Ta. Our results show that the lowest energy structures for Nb4 and Ta4 are regular tetrahedra with Td symmetry and singlet multiplicity whereas V4 is a triplet state with C2v symmetry. The monosubstituted isomers, A3B, all have C3v symmetry but several higher energy Cs structures have been found that are approximately 100 kJ mol−1 higher in energy. The disubstituted isomers all posses arachno-butterfly structures; the A2B2 types with C2v symmetry and the A2BC types with Cs symmetry. However, the relative openness of the arachno structures is found to be specific to the composition of the mixed-metal cluster.


2017 ◽  
Vol 19 (44) ◽  
pp. 30089-30096 ◽  
Author(s):  
Jie J. Bao ◽  
Laura Gagliardi ◽  
Donald G. Truhlar

MC-PDFT is more accurate than CR-EOM-CCSD(T) or TDDFT when averaged over the first four adiabatic excitation energies of CN.


Sign in / Sign up

Export Citation Format

Share Document