triplet state
Recently Published Documents


TOTAL DOCUMENTS

3262
(FIVE YEARS 205)

H-INDEX

88
(FIVE YEARS 11)

2022 ◽  
Vol 23 (2) ◽  
pp. 876
Author(s):  
Dan Deng ◽  
Bingbing Suo ◽  
Wenli Zou

In this work, the phosphorescence mechanism of (E)-3-(((4-nitrophenyl)imino)methyl)-2H-thiochroman-4-olate-BF2 compound (S-BF2) is investigated theoretically. The phosphorescence of S-BF2 has been reassigned to the second triplet state (T2) by the density matrix renormalization group (DMRG) method combined with the multi-configurational pair density functional theory (MCPDFT) to approach the limit of theoretical accuracy. The calculated radiative and non-radiative rate constants support the breakdown of Kasha’s rule further. Our conclusion contradicts previous reports that phosphorescence comes from the first triplet state (T1). Based on the revised phosphorescence mechanism, we have purposefully designed some novel compounds in theory to enhance the phosphorescence efficiency from T2 by replacing substitute groups in S-BF2. Overall, both S-BF2 and newly designed high-efficiency molecules exhibit anti-Kasha T2 phosphorescence instead of the conventional T1 emission. This work provides a useful guidance for future design of high-efficiency green-emitting phosphors.


Author(s):  
Dovydas Banevičius ◽  
Gediminas Kreiza ◽  
Rokas Klioštoraitis ◽  
Saulius Jursenas ◽  
Tomas Javorskis ◽  
...  

Efficient triplet-to-singlet conversion in conventional donor-acceptor TADF compounds relies on charge-transfer (CT) and locally-excited (LE) triplet state mixing as this provides required spin-orbit coupling. In this work, asymmetric carbazole-donor motif...


2022 ◽  
Vol 130 (1) ◽  
pp. 138
Author(s):  
В.П. Дресвянский ◽  
С.А. Зилов ◽  
Е.Ф. Мартынович

Single F2 and F3+- color centers in the LiF crystal were studied by confocal fluorescence microscopy. The time dependences of their fluorescence intensity were analyzed and statistically processed. Our studies show that, the F3+- color center, being photoexcited, is able enter the triplet state, while in ground (singlet) state it changes orientation with a frequency of 1.5 – 2 Hz at room temperature, due to reorientational diffusion, unlike the F2- center, which is reoriented only being in the triplet state. This subtype of rotational diffusion of the center does not lead to its translational diffusion.


Author(s):  
Xinyu Nie ◽  
Heyuan Liu ◽  
Weijie Wang ◽  
Pengkun Su ◽  
Jun Zhou ◽  
...  

Efficient singlet fission (SF) materials with relatively high triplet state energy and broadband light harvesting ability simultaneously have a greater advantage for its practical application into photovoltaics. Herein, we prepared...


2021 ◽  
Vol 22 (24) ◽  
pp. 13289
Author(s):  
Magdalena Laskowska ◽  
Anna Nowak ◽  
Mateusz Dulski ◽  
Peter Weigl ◽  
Thomas Blochowicz ◽  
...  

Photoluminescence is known to have huge potential for applications in studying biological systems. In that respect, phosphorescent dye molecules open the possibility to study the local slow solvent dynamics close to hard and soft surfaces and interfaces using the triplet state (TSD: triplet state solvation dynamics). However, for that purpose, probe molecules with efficient phosphorescence features are required with a fixed location on the surface. In this article, a potential TSD probe is presented in the form of a nanocomposite: we synthesize spherical silica particles with 2-naphthalene methanol molecules attached to the surface with a predefined surface density. The synthesis procedure is described in detail, and the obtained materials are characterized employing transmission electron microscopy imaging, Raman, and X-ray photoelectron spectroscopy. Finally, TSD experiments are carried out in order to confirm the phosphorescence properties of the obtained materials and the route to develop phosphorescent sensors at silica surfaces based on the presented results is discussed.


iScience ◽  
2021 ◽  
pp. 103600
Author(s):  
Nikolaos Liaros ◽  
Sandra A. Gutierrez Razo ◽  
Matthew D. Thum ◽  
Hannah M. Ogden ◽  
Andrea N. Zeppuhar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Waygen Thor ◽  
Yue Wu ◽  
Lei Wang ◽  
Yonghong Zhang ◽  
Peter A. Tanner ◽  
...  

AbstractEmission from the triplet state of an organo-lanthanide complex is observed only when the energy transfer to the lanthanide ion is absent. The triplet state lifetime under cryogenic conditions for organo-lanthanide compounds usually ranges up to tens of milliseconds. The compound LaL1(TTA)3 reported herein exhibits 77 K phosphorescence observable by the naked eye for up to 30 s. Optical spectroscopy, density functional theory (DFT) and time-dependent DFT techniques have been applied to investigate the photophysical processes of this compound. In particular, on-off continuous irradiation cycles reveal a charging behaviour of the emission which is associated with triplet-triplet absorption because it shows a shorter rise lifetime than the corresponding decay lifetime and it varies with illumination intensity. The discovery of the behaviour of this compound provides insight into important photophysical processes of the triplet state of organo-lanthanide systems and may open new fields of application such as data encryption, anti-counterfeiting and temperature switching.


Sign in / Sign up

Export Citation Format

Share Document