scholarly journals Exploring Clustering-Based Reinforcement Learning for Personalized Book Recommendation in Digital Library

Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 198
Author(s):  
Xinhua Wang ◽  
Yuchen Wang ◽  
Lei Guo ◽  
Liancheng Xu ◽  
Baozhong Gao ◽  
...  

Digital library as one of the most important ways in helping students acquire professional knowledge and improve their professional level has gained great attention in recent years. However, its large collection (especially the book resources) hinders students from finding the resources that they are interested in. To overcome this challenge, many researchers have already turned to recommendation algorithms. Compared with traditional recommendation tasks, in the digital library, there are two challenges in book recommendation problems. The first is that users may borrow books that they are not interested in (i.e., noisy borrowing behaviours), such as borrowing books for classmates. The second is that the number of books in a digital library is usually very large, which means one student can only borrow a small set of books in history (i.e., data sparsity issue). As the noisy interactions in students’ borrowing sequences may harm the recommendation performance of a book recommender, we focus on refining recommendations via filtering out data noises. Moreover, due to the the lack of direct supervision information, we treat noise filtering in sequences as a decision-making process and innovatively introduce a reinforcement learning method as our recommendation framework. Furthermore, to overcome the sparsity issue of students’ borrowing behaviours, a clustering-based reinforcement learning algorithm is further developed. Experimental results on two real-world datasets demonstrate the superiority of our proposed method compared with several state-of-the-art recommendation methods.

Author(s):  
Pinar Demetci ◽  
Rebecca Santorella ◽  
Björn Sandstede ◽  
William Stafford Noble ◽  
Ritambhara Singh

AbstractData integration of single-cell measurements is critical for understanding cell development and disease, but the lack of correspondence between different types of measurements makes such efforts challenging. Several unsupervised algorithms can align heterogeneous single-cell measurements in a shared space, enabling the creation of mappings between single cells in different data domains. However, these algorithms require hyperparameter tuning for high-quality alignments, which is difficult in an unsupervised setting without correspondence information for validation. We present Single-Cell alignment using Optimal Transport (SCOT), an unsupervised learning algorithm that uses Gromov Wasserstein-based optimal transport to align single-cell multi-omics datasets. We compare the alignment performance of SCOT with state-of-the-art algorithms on four simulated and two real-world datasets. SCOT performs on par with state-of-the-art methods but is faster and requires tuning fewer hyperparameters. Furthermore, we provide an algorithm for SCOT to use Gromov Wasserstein distance to guide the parameter selection. Thus, unlike previous methods, SCOT aligns well without using any orthogonal correspondence information to pick the hyperparameters. Our source code and scripts for replicating the results are available at https://github.com/rsinghlab/SCOT.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


Author(s):  
Usman Ahmed ◽  
Jerry Chun-Wei Lin ◽  
Gautam Srivastava

Deep learning methods have led to a state of the art medical applications, such as image classification and segmentation. The data-driven deep learning application can help stakeholders to collaborate. However, limited labelled data set limits the deep learning algorithm to generalize for one domain into another. To handle the problem, meta-learning helps to learn from a small set of data. We proposed a meta learning-based image segmentation model that combines the learning of the state-of-the-art model and then used it to achieve domain adoption and high accuracy. Also, we proposed a prepossessing algorithm to increase the usability of the segments part and remove noise from the new test image. The proposed model can achieve 0.94 precision and 0.92 recall. The ability to increase 3.3% among the state-of-the-art algorithms.


2020 ◽  
Vol 34 (04) ◽  
pp. 6853-6860
Author(s):  
Xuchao Zhang ◽  
Xian Wu ◽  
Fanglan Chen ◽  
Liang Zhao ◽  
Chang-Tien Lu

The success of training accurate models strongly depends on the availability of a sufficient collection of precisely labeled data. However, real-world datasets contain erroneously labeled data samples that substantially hinder the performance of machine learning models. Meanwhile, well-labeled data is usually expensive to obtain and only a limited amount is available for training. In this paper, we consider the problem of training a robust model by using large-scale noisy data in conjunction with a small set of clean data. To leverage the information contained via the clean labels, we propose a novel self-paced robust learning algorithm (SPRL) that trains the model in a process from more reliable (clean) data instances to less reliable (noisy) ones under the supervision of well-labeled data. The self-paced learning process hedges the risk of selecting corrupted data into the training set. Moreover, theoretical analyses on the convergence of the proposed algorithm are provided under mild assumptions. Extensive experiments on synthetic and real-world datasets demonstrate that our proposed approach can achieve a considerable improvement in effectiveness and robustness to existing methods.


2010 ◽  
Vol 44-47 ◽  
pp. 3611-3615 ◽  
Author(s):  
Zhi Cong Zhang ◽  
Kai Shun Hu ◽  
Hui Yu Huang ◽  
Shuai Li ◽  
Shao Yong Zhao

Reinforcement learning (RL) is a state or action value based machine learning method which approximately solves large-scale Markov Decision Process (MDP) or Semi-Markov Decision Process (SMDP). A multi-step RL algorithm called Sarsa(,k) is proposed, which is a compromised variation of Sarsa and Sarsa(). It is equivalent to Sarsa if k is 1 and is equivalent to Sarsa() if k is infinite. Sarsa(,k) adjust its performance by setting k value. Two forms of Sarsa(,k), forward view Sarsa(,k) and backward view Sarsa(,k), are constructed and proved equivalent in off-line updating.


2020 ◽  
Vol 34 (01) ◽  
pp. 1153-1160 ◽  
Author(s):  
Xinshi Zang ◽  
Huaxiu Yao ◽  
Guanjie Zheng ◽  
Nan Xu ◽  
Kai Xu ◽  
...  

Using reinforcement learning for traffic signal control has attracted increasing interests recently. Various value-based reinforcement learning methods have been proposed to deal with this classical transportation problem and achieved better performances compared with traditional transportation methods. However, current reinforcement learning models rely on tremendous training data and computational resources, which may have bad consequences (e.g., traffic jams or accidents) in the real world. In traffic signal control, some algorithms have been proposed to empower quick learning from scratch, but little attention is paid to learning by transferring and reusing learned experience. In this paper, we propose a novel framework, named as MetaLight, to speed up the learning process in new scenarios by leveraging the knowledge learned from existing scenarios. MetaLight is a value-based meta-reinforcement learning workflow based on the representative gradient-based meta-learning algorithm (MAML), which includes periodically alternate individual-level adaptation and global-level adaptation. Moreover, MetaLight improves the-state-of-the-art reinforcement learning model FRAP in traffic signal control by optimizing its model structure and updating paradigm. The experiments on four real-world datasets show that our proposed MetaLight not only adapts more quickly and stably in new traffic scenarios, but also achieves better performance.


2016 ◽  
Vol 57 ◽  
pp. 1-37 ◽  
Author(s):  
Simone Villa ◽  
Fabio Stella

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Furthermore, the performance achieved by non-stationary continuous time Bayesian networks is compared to that achieved by state-of-the-art algorithms on four real-world datasets, namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.


Author(s):  
Elaheh Barati ◽  
Xuewen Chen

In reinforcement learning algorithms, leveraging multiple views of the environment can improve the learning of complicated policies. In multi-view environments, due to the fact that the views may frequently suffer from partial observability, their level of importance are often different. In this paper, we propose a deep reinforcement learning method and an attention mechanism in a multi-view environment. Each view can provide various representative information about the environment. Through our attention mechanism, our method generates a single feature representation of environment given its multiple views. It learns a policy to dynamically attend to each view based on its importance in the decision-making process. Through experiments, we show that our method outperforms its state-of-the-art baselines on TORCS racing car simulator and three other complex 3D environments with obstacles. We also provide experimental results to evaluate the performance of our method on noisy conditions and partial observation settings.


2020 ◽  
Vol 34 (01) ◽  
pp. 1250-1257 ◽  
Author(s):  
Haoxi Zhong ◽  
Yuzhong Wang ◽  
Cunchao Tu ◽  
Tianyang Zhang ◽  
Zhiyuan Liu ◽  
...  

Legal Judgment Prediction (LJP) aims to predict judgment results according to the facts of cases. In recent years, LJP has drawn increasing attention rapidly from both academia and the legal industry, as it can provide references for legal practitioners and is expected to promote judicial justice. However, the research to date usually suffers from the lack of interpretability, which may lead to ethical issues like inconsistent judgments or gender bias. In this paper, we present QAjudge, a model based on reinforcement learning to visualize the prediction process and give interpretable judgments. QAjudge follows two essential principles in legal systems across the world: Presumption of Innocence and Elemental Trial. During inference, a Question Net will select questions from the given set and an Answer Net will answer the question according to the fact description. Finally, a Predict Net will produce judgment results based on the answers. Reward functions are designed to minimize the number of questions asked. We conduct extensive experiments on several real-world datasets. Experimental results show that QAjudge can provide interpretable judgments while maintaining comparable performance with other state-of-the-art LJP models. The codes can be found from https://github.com/thunlp/QAjudge.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Yuchen Fu ◽  
Quan Liu ◽  
Xionghong Ling ◽  
Zhiming Cui

Reinforcement learning (RL) is one kind of interactive learning methods. Its main characteristics are “trial and error” and “related reward.” A hierarchical reinforcement learning method based on action subrewards is proposed to solve the problem of “curse of dimensionality,” which means that the states space will grow exponentially in the number of features and low convergence speed. The method can reduce state spaces greatly and choose actions with favorable purpose and efficiency so as to optimize reward function and enhance convergence speed. Apply it to the online learning in Tetris game, and the experiment result shows that the convergence speed of this algorithm can be enhanced evidently based on the new method which combines hierarchical reinforcement learning algorithm and action subrewards. The “curse of dimensionality” problem is also solved to a certain extent with hierarchical method. All the performance with different parameters is compared and analyzed as well.


Sign in / Sign up

Export Citation Format

Share Document